Großwasserraumkessel
aus Wikipedia, der freien Enzyklopädie
Der Großwasserraumkessel ist ein Dampfkessel und dient der Erzeugung von Wasserdampf oder Heißwasser in Industrieunternehmen und an Bord von Dampfschiffen. Charakteristisch für die Kesselbauart ist ein zylindrischer Wasser-Dampf-Raum mit ebenen oder gekrempten Böden. Die Befeuerung erfolgte ursprünglich von außen. Bei aktuellen Konstruktionen erfolgt die Beheitzung ausschließlich von innen über das Flammrohr und Rauchrohre. Im Gegensatz zum Wasserrohrkessel wird das Rauchgas in den Rohren geführt.
Inhaltsverzeichnis |
[Bearbeiten] Historische Entwicklung
Die ersten Dampfkessel im Überdruckbereich zum Ende des 18. Jahrhunderts, die Dampf mit einem Überdruck von 0,5 - 1 bar erzeugten, waren genietete Kofferkessel.
Es folgte der Walzenkessel, als Urform der spannungsgünstigen Bauform mit zylindrischem Mantel und gewölbten Böden. In der Regel wurde der Kessel liegend betrieben. Es gab aber auch stehende Ausführungen, die in Hüttenwerken eingesetzt wurden und mit den abziehenden Gasen aus Flammen- und Glühöfen beheizt wurden.
Der Kessel war eingemauert und wurde von unten befeuert. Die Rauchgase wurden um die Außenwandungen des Kessels geleitet. In dem Mauerwerk waren Züge eingemauert, um die Wärme des Rauchgases so gut wie möglich zu nutzen. Oft waren unterhalb der Kessel 2 getrennte Kanäle angelegt worden. Der Kessel wurde mit leichtem Gefälle nach hinten aufgestellt, damit der gebildete Schlamm nach hinten zum Abschlammventil abgeleitet wird und der Wärmeübergang von der Kesselsohle nicht noch weiter behindert wird.
Der Durchmesser der Walzenkessel betrug bis zu 1,5 m bei einer Länge bis zu 10 m. Bei dieser Dimensionierung erreicht man eine Heizfläche von 25 m². Die flächenspezifische Dampfleistung beträgt 10 - 12 kg Dampf pro m² und Stunde; so dass die Dampfleistung des Walzenkessels auf 300 kg/h begrenzt ist.
Der Walzenkessel war eine konstengünstige Bauart. Der Kesselstein konnte einfach mit dem Kesselsteinhammer gelöst werden, da keine Einbauten diese Arbeit behindern. Die Wärmeausnutzung ist sehr ungünstig und der Kessel bedarf einer sehr langen Aufheitzzeit und war somit nur für kontinuierlich arbeitende Betriebe einsetzbar.
Der mehrfache Walzenkessel besteht aus dem oben liegenden Hauptkessel oder Oberkessel und darunter liegenden kleineren Kesseln, die als Unterkessel bezeichnet werden. Die Unterkessel weisen etwa 2/3 des Durchmessers des Hauptkessels auf. Der Durchmesser des Unterkessels sollte aber 55 cm nicht unterschreiten, um den Teil auch befahren und vom Kesselstein reinigen zu können. Die Teilkessel sind mit Stutzen miteinander verbunden. Es gab Anordnungen mit zwei Unterkessel, die nebeneinander angeordnet wurden. Es sind je nach Dampfbedarf auch mehrere Teilkessel übereinander verbunden worden; dieses wurde dann als Batteriekessel bezeichnet. Die Feuerung wurde unter den Oberkessel gelegt, wobei Plan- oder Schrägroste zur Anwendung kamen. Die Rauchgase wurden dann um die Unterkessel geleitet. Der Schlamm setzte sich in dem unteren Kessel ab.
Der Walzenkessel mit einem Unterkessel hat eine Heizfläche bis 50 m²; mit 2 Unterkessel sind es 70 m². Batteriekessel erreichten Heizfflächen bis 150 m². Die Heizflächenbelastung ist vergleichbar mit der der des einfachen Walzenkessels.
Als weiterer Entwicklungsschritt entstand 1811 der Flammrohrkessel. Dieser bestand aus einem zylindrischen Mantel und einem Flammrohr, das zwischen den beiden Kesselböden eingenietet wurde. Die ersten Kessel dieser Bauart konnten mit einem Druck bis 7 bar betrieben werden. Die Kesselbauart stellte schon höhere Anforderungen an den Hersteller. Die Feuerung erfolgte ausschließlich mit Festbrennstoffen. Ein Planrost ist entweder im Flammrohr eingebaut oder die Feuerung wird in einer vorgelagerten Brennkammer betrieben, die als Schrägrost ausgeführt sein kann.
Der Wärmeübergang erfolgte durch Strahlung im Bereich der Flammenausbildung und Konvektion. Diese Kessel waren eingemauert und die Rauchgase wurden durch gemauerte Zwischenwände um die Mantelwand geleitet, so dass der Wärmeinhalt des Rauchgases so gut wie möglich genutzt werden konnten. Eine Weiterentwicklung bildete der Doppelflammrohrkessel. Diese Bauart war in Industriebetrieben weit verbreitet, wenn Dampf mit Drücken bis ca. 16 bar benötigt wurde. Diese Kessel wurden in Kesselanlagen des Bergbaus oft eingesetzt, um Dampf für die Fördermaschinen zu erzeugen oder in Industriebetrieben, die Dampfmaschinen für den Antrieb einer Transmission (Maschinenbau) einsetzten. Ein wichtiger Aspekt in der Dimensionierung war der ausreichende Freiraum im Kessel, um Kesselstein durch händisches Picken entfernen zu können. Flammrohrkessel wurden immer mit einem Dampfdom ausgestattet.
Genietete Dampfkessel wurden bis ca. 1945 gebaut. Nachteil der Flammrohrkessel war die nicht optimale Nutzung des Wärmeinhalts der Rauchgase, da eine Vergrößerung der Heizfläche konstruktionsbedingt am Kessel selbst nicht möglich ist. Eine optimierte Ausnutzung der Rauchgaswärme war nur durch den Einbau von Nachschaltheizflächen möglich, die als Überhitzer und /oder Speisewasservorwärmer einsetzbar sind.
Zur Mitte des 20. Jahrhunderts hatte sich auch die Schweißtechnik und die Güte der Werkstoffe soweit entwickelt, dass Schweißverbindungen auch für höher belastete Bauteile zuverlässig hergestellt werden konnten. Hinzu kommt, dass nahtlose Stahlrohre seit Ende des 19. Jahrhunderts (Mannesmann) zur Verfügung standen. Es wurde der Flammrohrrauchrohrkessel entwickelt, den folgende Konstruktionsdetails auszeichnen:
- alle Verbindungen sind geschweißt,
- Der Kessel hat ein Flammrohr und die Rauchgase werden mehrfach in Längsrichtung des Kessels umgeleitet. Der Kessel weist mehrere Züge auf (2 - 5 Rauchgaszüge), die durch Wendekammern am hinteren und vorderen Boden verbunden sind.
Über den Flammrohren sind die sogenannten Rauchrohre für die weitere Nutzung der Rauchgaswärme eingezogen, die wesentlich kleiner im Durchmesser sind als die Flammrohre. Der konvektive Wärmeübergang in einer Vielzahl von Rauchrohren ist wegen des geringeren hydraulischen Durchmessers (größere Reynoldszahl) wesentlich besser als bei einem Rohr mit großem Durchmesser. Außerdem wird bei Rohren mit geringem Durchmesser eine größere Heizfläche im Verhältnis zur Gesamtquerschnittsfläche der Rohre erreicht. Der Flammrohr-Rauchrohr-Kessel wird nur noch von innen beheizt. Es entfällt das Mauerwerk und die Wandungen sind nach außen wärmegedämmt ausgeführt.
[Bearbeiten] Konstruktive Details
Flammrohrrauchrohrkessel mit niedriger Belastung haben oft ein glattes Flammrohr und ebene Böden. Großraumwasserkessel mit höheren Betriebsdrücken sind mit gewellten Flammrohren (höhere Festigkeit gegenüber Einbeulen) und ebenen gekrempten Böden ausgeführt. Der Vorteil des gekrempten Bodens ist die Lage der Schweißnaht im zylindrischen Bereich vor der Krempe, so dass die Naht nur durch Zugspannungen belastet wird. Bei ebenen Scheibenböden treten zusätzlich ungünstige Biegespannungen auf.
Um die thermischen Spannungen in den Kesselbauteilen gering zu halten, werden möglichst geringe Wandstärken insbesondere an Kesselböden und insbesondere der Rohrplatten verwendet. Um die Biegespannungen auf die ebenen Böden zu beherrschen und möglichst gleichmäßig auf den Mantel abzuleiten werden in den nicht berohrten Bereichen des Zylindermantels zusätzlich Eck- oder Zuganker eingeschweißt. Dies sind spannungstechnisch kritische und schadensanfällige Komponenten. Hier müssen insbesondere die Schweißnähte durchgeschweißt sein und durch die Form der Anker muss ein gleichmäßiger Spannungsfluss gewährleistet sein.
Mehr als drei Züge sind bei heutigen Großwasserraumkesselkonstruktionen nicht üblich. Die Großwasserraumkessel zeichnen sich durch einen hohen Wasserinhalt (1 - 30 t) und somit eine hohe Wärmespeicherfähigkeit und Unempfindlichkeit gegen schwankenden Dampfverbrauch aus, jedoch sind sie nicht für hohe Drücke geeignet (bis ca. 30 bar)und erzeugen keine besonders hohen Dampfmengen (bis ca. 45 t/h). Sie sind aufgrund ihrer Bauweise (Niete, Bleche, Rauchrohre, Verstärkungs- und Zuganker) empfindlich gegen Wärmespannungen beim Hochheizen und Abkühlen. Die Kessel werden daher langsam hochgefahren.
Um den Brennstoffverbrauch weiter zu senken, wurden Zusatzvorrichtungen wie Luftvorwärmer (Luvo) und Economiser (Eco: Speisewasservorwärmer) entwickelt. Im Luftvorwärmer wird die Verbrennungsluft mit Hilfe der heißen Rauchgase auf 100 bis 200 Grad Celsius vorgewärmt, bevor sie der Verbrennung zugeführt wird. Im Economiser wird das Kesselspeisewasser erwärmt, bevor es in den Kessel geleitet wird. Der Economiser ist beim Großwasserraumkessel ein separates Bauteil, durch den das aus dem Kessel abgeführte Rauchgas mit Temperaturen von 200 - 300°C geleitet wird. Es besteht aus einer Rohranordnung, die oft noch mit Rippen versehen ist.
[Bearbeiten] Feuerung
Die Kessel wurden zur Mitte des 20. Jahrhunderts meistens mit Festbrennstoffen (Kohle, Holz) beheizt. In den 50er und 60er Jahren wurde die Feuerung vieler Kessel wegen der einfacheren Handhabung auf Heizöl umgerüstet. Der preisgünstigste Brennstoff war das schwere Heizöl S, das für die Förderung erwärmt werden muss. Wegen der Emissionen (hoher Schwefelgehalt, NOx und Staubbelastung) sowie dem aufwändigeren Betrieb (Brenner und Kessel müssen regelmäßig gereinigt werden, Verkleben von Zuleitungen bei ausgefallener Begleitbeheizung) wird das Heizöl S kaum noch verwendet. Außerdem sind zusätzliche Maßnahmen erforderlich (Entstickung, Entstaubung), um die aktuellen Emissionsgrenzwerte einzuhalten. Daher wird fast nur noch Heizöl der Sorte EL (extra leicht) eingesetzt. Mit der Verbreitung von Erdgas in den 60er Jahren des 20. Jahrhunderts wird das Gas für die Feuerung von Großwasserraumkesseln verwendet, wenn es an der Betriebsstätte verfügbar ist. Der Vorteil der Erdgasfeuerung liegt in der emissionsarmen Verbrennung und es tritt bei korrekter Brennereinstellung praktisch keine Rußbildung auf.
[Bearbeiten] Speisewasser
Das Speisewasser von Großwasserraumkesseln muss aufbereitet werden, um Korrosionen und Kesselsteinablagerungen zu verhindern. Soweit das eingesetzte Zusatzwasser nicht eine besonders hohe Härte aufweist, reicht es in den meisten Fällen aus, die Härtebildner an einem mit Kochsalz regenerierten Basenaustauscher durch Cl-Ionen auszutauschen. Das Speisewasser sollte thermisch entgast werden. Dem Speisewasser muss Konditionierungsmittel (z.B. Tri-Natriumphosphat) zugesetzt werden, um den Ausfall von Resthärte zu verhindern, Restsauerstoff chemisch abzubinden und den ph-Wert anzuheben. Das Speisewasser muss ferner entölt werden.
[Bearbeiten] Schiffsdampfkessel
Lagen die Schiffe im Hafen, wurde bei einer Liegezeit von bis zu 3 Wochen durchgeheizt, das heißt, wenigstens ein Flammrohr, meist der sogenannte "monkey", also das Flammrohr an der niedrigsten Stelle des Kessels, wurde sparsam weiterbefeuert, um das Kesselwasser gerade bei etwa 100 °C und etwa 1 bar Druck zu halten.
Solange Dampfschiffe keine Entsalzungsanlagen hatten, musste Reservewasser mitgeführt werden, um unvermeidliche Verluste durch Abschlammung, Dampfleckagen oder die Dampfpfeife auszugleichen.
[Bearbeiten] Beschaffenheitsanforderungen
Großwasserraumkessel sind Druckgeräte im Sinne der Druckgeräterichtlinie 97/23/EG und dürfen nur in Verkehr gebracht werden, wenn der Hersteller durch ein Konformitätsbewertungsverfahren unter Beteiligung einer benannten Stelle nachgewiesen hat, dass die grundlegenden Sicherheitsanforderungen der Richtlinie eingehalten hat. Der Hersteller bringt das CE-Zeichen an und stellt eine Konformitätserklärung aus. Harmonisierte Produktnormen für Großwasserraumkessel sind:
- EN 12953-1 bis 14: Großwasserraumkessel
- EN 14222: Edelstahl-Großwasserraumkessel
Bei Anwendung dieser Norm kann der Hersteller davon ausgehen, dass er die grundlegenden Sicherheitsanforderungen der Richtlinie erfüllt (Vermutungswirkung).
[Bearbeiten] Literaturquellen
- Joh. Eug. Mayer, Taschenbuch für den modernen Heizer und Kesselwärter, 1912, Verlag Hermann Schran & Co, Berlin
- R. E. Th. Schlippe, Die Dampfkessel und ihr Betrieb, 4. Auflage 1923, Berlin, Verlag Julius Springer
- Wilhelm Leder, Schiffsmaschinenkunde Band I: Schiffsdampfkessel, 1956, Fachbuchverlag Leipzig
- Fritz Mayr, Kesselbetriebstechnik, 10. Auflage 2003, ISBN 3-930039-13-3