Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Mohrscher Spannungskreis - Wikipedia

Mohrscher Spannungskreis

aus Wikipedia, der freien Enzyklopädie

Beispiel für den mohrschen Spannungskreis
Beispiel für den mohrschen Spannungskreis
Spannungszustand im gedrehten Schnitt
Spannungszustand im gedrehten Schnitt
Gedrehtes Koordinatensystem (schiefer Schnitt)
Gedrehtes Koordinatensystem (schiefer Schnitt)

Der mohrsche Spannungskreis ist ein von Christian Otto Mohr entwickeltes Verfahren zur geometrischen Darstellung von Normal- und Schubspannungen innerhalb eines von Kräften und Momenten belasteten Querschnitts. In analoger Weise können mit dem Mohrschem Trägheitskreis die Flächenträgheits- und die Flächenzentrifugalmomente einer beliebigen Fläche bestimmt werden.

In der Festigkeitslehre kann das Verfahren angewendet werden, um mechanische Belastungen in einem Werkstück zu bestimmen. Dabei wird beispielsweise ein Stab in einem Winkel φ geschnitten und die auftretenden Schub- und Normalspannungen in Abhängigkeit von diesem Winkel im Spannungskreis aufgetragen.

[Bearbeiten] ebener Spannungszustand

Die beiden Hauptspannungen im ebenen Spannungszustand sind durch die Formel

{\sigma_{1,2} = \atop \ } {\underbrace{{1 \over 2} \left ( \sigma_{xx} + \sigma_{yy} \right )} \atop \rm{Kreismittelpunkt}} {\pm \atop \ } { \underbrace{\sqrt{ \left [ {\sigma_{xx} - \sigma_{yy} \over 2 }\right ]^2 + \tau_{xy}^2}} \atop \rm{Kreisradius}}


zu bestimmen. Die Ergebnisse werden so sortiert, dass \sigma_1 \ge \sigma_2. Hauptspannungen sind diejenigen Spannungen, die bei einem bestimmten Winkel φ auftreten, für den die Schubspannungen verschwinden.

Die Winkel, unter denen die Hauptspannungen auftreten, sind durch

\tan 2\varphi_{1,2} = { 2\tau_{xy} \over \sigma_{xx} - \sigma_{yy}}

gegeben. Diese Bestimmung liefert aufgrund der Eigenschaften des Tangens kein eindeutiges Ergebnis; Die Winkel lassen sich jedoch auch aus dem Spannungskreis ablesen: Dazu lässt man den Punkt (\sigma_{\xi\xi},\tau_{\xi\eta}) \, entlang der Kreisbahn nach unten wandern, bis er über σ1 und σ2 streicht. Der an diesen Punkten gefundene Winkel entspricht 2φ - er muss also noch halbiert werden.


Im ebenen Spannungszustand lassen sich die maximalen Schubspannungen wie folgt berechnen:

\tau_{max} = {\sigma_1 - \sigma_2 \over 2} = {\sqrt{ \left [ {\sigma_{xx} - \sigma_{yy} \over 2 }\right ]^2 + \tau_{xy}^2}}

Sie treten im Winkel φ' auf, der um 45° gegen die Hauptspannungsrichtungen geneigt ist.


Zur Berechnung der Spannungen in einem beliebigen Schnittwinkel φ können folgende Formeln verwendet werden:

\sigma_{\xi\xi} = {1 \over 2}(\sigma_{xx} + \sigma_{yy}) + {1 \over 2}(\sigma_{xx} - \sigma_{yy}) \cos 2\varphi + \tau_{xy}\sin 2\varphi

\sigma_{\eta\eta} = {1 \over 2}(\sigma_{xx} + \sigma_{yy}) - {1 \over 2}(\sigma_{xx} - \sigma_{yy}) \cos 2\varphi - \tau_{xy}\sin 2\varphi

\tau_{\xi\eta} = - {1 \over 2}(\sigma_{xx} - \sigma_{yy}) \sin 2\varphi + \tau_{xy}\cos 2\varphi

Es lässt sich zeigen, dass die Summe der Spannungen im gedrehten Schnitt gleich der Summe der Spannungen im ungedrehten System sind:

\sigma_{\xi\xi} + \sigma_{\eta\eta} = \sigma_{xx} + \sigma_{yy} \,

[Bearbeiten] Sonderfälle

Bei einem Zugstab liegt der Spannungskreis auf der rechten Seite des Koordinatensystems, da σ2 = 0 und σ1 > 0. Ist ein Druckstab gegeben, so liegt der Spannungskreis komplett im negativen Bereich des Koordinatensystems. Hier ist σ1 = 0 und σ2 < 0.

Treten nur Schubspannungen auf, so liegt der Mittelpunkt des Spannungskreises im Ursprung des Koordinatensystems.

Bei hydrostatischem Druck (ideale Flüssigkeit) ist vom Winkel φ unabhängig τ = 0; Der Spannungskreis entartet aufgrund des nun nicht mehr vorhandenen Radius zu einem Punkt.

Siehe auch: Mechanische Spannung

[Bearbeiten] Weblinks

Andere Sprachen
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu