New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Run-Test - Wikipedia

Run-Test

aus Wikipedia, der freien Enzyklopädie

Der Run- oder Runs-Test (auch Wald-Wolfowitz-Test, nach Abraham Wald und Jacob Wolfowitz, oder Iterationstest) ist ein nichtparametrischer Test auf Zufälligkeit einer Folge. Konzeptionell wird von einer dichotomen Grundgesamtheit, also einem Urnenmodell mit zwei Sorten Kugeln, ausgegangen. Es sind n viele Kugeln entnommen worden. Es soll die Hypothese geprüft werden, dass die Entnahme zufällig erfolgt ist.


Inhaltsverzeichnis

[Bearbeiten] Vorgehensweise

Es wurden einer dichotomen Grundgesamtheit n Kugeln entnommen. Die Ergebnisse liegen in ihrer chronologischen Abfolge vor. Es werden nun alle benachbarten Ergebnisse gleicher Ausprägung zu einem Lauf oder Run zusammengefasst. Wenn die Folge tatsächlich zufällig ist, sollten nicht zu wenig Runs vorliegen, aber auch nicht zu viele.

Es wird die Hypothese aufgestellt: Die Entnahme erfolgte zufällig.

Für die Festlegung der Zahl der Runs, bei der die Hypothese abgelehnt wird, wird die Verteilung der Runs benötigt: Es seien n1 die Zahl der Kugeln erster Sorte und n2 = n - n1 der zweiten Sorte; es sei r die Zahl der Runs. Nach dem Symmetrieprinzip ist die Wahrscheinlichkeit für jede beliebige Folge der Kugeln bei zufälliger Entnahme gleich groß. Es gibt insgesamt

\frac{(n_1 + n_2)!}{n_1! \cdot n_2!}

Möglichkeiten der Entnahme.

Bezüglich der Verteilung der Zahl der Runs unterscheidet man die Fälle:

1. Die Zahl der Runs r ist geradzahlig:

Es liegen q= \frac {r}{2} Runs der Kugeln der ersten Sorte und q= \frac {r}{2} Runs der Kugeln der zweiten Sorte vor. Die Wahrscheinlichkeit, dass genau r Runs eingetreten sind, ist dann
P(R=2q) = \frac { 2 {{n_1-1} \choose {q-1}} {{n_2-1} \choose {q-1}}} {{{n_1+n_2} \choose n_1}}

2. Die Zahl der Runs r ist ungeradzahlig:

Es liegen q = \frac {r+1}{2} Runs der Kugeln der ersten Sorte und q = \frac {r-1}{2} Runs der Kugeln der zweiten Sorte vor oder der umgekehrte Fall. Die Wahrscheinlichkeit, dass genau r Runs eingetreten sind, berechnet sich dann als Summe aus diesen beiden Möglichkeiten
P(R=2q+1)= \frac { {n_1-1 \choose q} {n_2-1 \choose q-1 } + {n_1-1 \choose q-1} {n_2-1 \choose q }} {{n_1+n_2 \choose n_1}}

Ist r zu klein oder zu groß, führt das zur Ablehnung der Nullhypothese. Bei einem Signifikanzniveau von alpha wird H0 abgelehnt, wenn für die Prüfgröße r gilt:

r \le r(\frac {\alpha}{2}) oder r \ge r(1 - \frac {\alpha}{2})

mit r(p)als Quantil der Verteilung von R an der Stelle p, wobei hier das Prinzip des konservativen Testens angewendet wird. Da die Berechnung der kritischen Werte von r für die Ablehnung der Hypothese umständlich ist, bedient man sich häufig einer Tabelle.

[Bearbeiten] Einfaches Beispiel

Für eine Podiumsdiskussion mit zwei politischen Parteien wurden die Sprecher angeblich zufällig ermittelt. Es wurde ausgelost, dass von der Partei Supi 4 Vertreter und von der Partei Toll 5 Vertreter in der folgenden Reihe sprechen dürfen:

S S  T  S  T T T  S  T

Ein Vertreter von Toll beschwerte sich, dass S vorgezogen würde. Es wurde ein Run-Test vorgenommen:

Es ist n1 = 4 und n2 = 5. Man erhielt r = 6 Runs.

Nach der Tabelle des Run-Testes wird H0 abgelehnt, wenn r ≤ 2 oder r ≥ 9 ist. Also liegt die Prüfgröße r = 6 im Nichtablehnungsbereich; man kann nach den Kriterien des Run-Testes davon ausgehen, dass die Reihenfolge der Sprecher zufällig ist.

[Bearbeiten] Ergänzungen

[Bearbeiten] Parameter der Verteilung von R

Der Erwartungswert von R ist

ER = \frac{2 n_1 n_2}{n} + 1

und die Varianz

varR = \frac{2 n_1 n_2 (2 n_1 n_2 - n)}{n^2(n_1 + n_2 - 1)}.


[Bearbeiten] Grundgesamtheit mit mehr als zwei Ausprägungen des Merkmals

Liegt eine Folge reeller Zahlen xi eines metrischen Merkmals vor, wird die Folge dichotomisiert: Man bestimmt den Median z der Stichprobe. Werte x < z werden als Kugeln 1. Sorte, Werte x > z als Kugeln 2. Sorte interpretiert. Diese dichotome Folge kann dann wieder auf Zufälligkeit getestet werden.

Liegt eine nichtnumerische Symbolsequenz mit mehr als zwei Ausprägungen vor, muss zunächst eine numerische Reihe erzeugt werden, wobei hier das Problem bestehen kann, dass die Symbole nicht geordnet werden können.


[Bearbeiten] Normalapproximation

Für Stichprobenumfänge n1,n2 > 20 ist die Zahl der Runs R annähernd normalverteilt mit Erwartungswert und Varianz wie oben. Man erhält die standardisierte Prüfgröße

z = \frac{r - (\frac{2 n_1 n_2}{n} + 1 )}{\sqrt{\frac{2 n_1 n_2 (2 n_1 n_2 - n)}{n^2(n_1 + n_2 - 1)}}}

Die Hypothese wird abgelehnt, wenn

z < -z(1 - \frac {\alpha}{2}) oder z > z(1 - \frac {\alpha}{2})

mit z(1 - \frac {\alpha}{2}) als Quantil der Standardnormalverteilung für die Wahrscheinlichkeit 1 - \frac {\alpha}{2} .

[Bearbeiten] Anwendungen

Der Runtest kann angewendet werden, um Stationarität bzw. Nicht-Korrelation in einer Zeitreihe oder anderen Sequenz zu überprüfen, vor allem wenn die Verteilung des Merkmals unbekannt ist. Die Nullhypothese ist hier, dass aufeinanderfolgende Werte unkorreliert sind.

Der Run-Test ist nicht so mächtig wie der Kolmogorow-Smirnow-Test oder der Chi-Quadrat-Test, kann aber mit letzterem kombiniert werden, da beide Prüfgrößen asymptotisch unabhängig voneinander sind.


[Bearbeiten] Beispiel für ein metrisches Merkmal

Es liegt die Folge

13  3      14      14      1       14      3       8       14      17      9       14      13      2       16      1       3       12      13      14

vor. Sie wird mit dem Median z = 13 dichotomisiert. Für die erste Ausprägung wird + gesetzt, für die zweite Ausprägung -.

0  -10     1       1       -12     1       -10     -5      1       4       -4      1       0       -11     3       -12     -10     -1      0       1
+  -       +       +       -       +       -       -       +       +       -       +       +       -       +       -       -       -       +       +

Man erhält bei n1 = 11 (+) und n2 = 9 (-) r = 13 Runs. R ist annähernd normalverteilt mit dem Erwartungswert

ER = \frac{(2\cdot11\cdot9)}{20} + 1 = 10,9

und der Varianz

varR= \frac{2 \cdot 11 \cdot 9 \cdot (2 \cdot 11 \cdot 9 - 20)}{20^2 \cdot 19} 4,6.

Die Prüfgröße z errechnet sich dann als

\frac{13 - 10,9}{\sqrt{4,6}}= 1.0

Bei einem Signifikanzniveau von 0,05 wird H0 abgelehnt, wenn |z| > 1,96. Dies ist nicht der Fall.

Entscheidung: Die Hypothese wird nicht abgelehnt. Die Elemente der Stichprobe sind vermutlich zufällig entnommen worden.

[Bearbeiten] Literatur

  • Bradley, (1968). Distribution-Free Statistical Tests, Chapter 12.
  • Herbert Büning, Götz Trenkler (1999). Nichtparametrische statistische Methoden, Kapitel 4.5, ISBN: 3110163519

[Bearbeiten] Siehe auch

Autokorrelation, Zufallszahlengenerator, Pseudozufallszahlen, Trend, Median, Varianz

[Bearbeiten] Weblinks

Andere Sprachen

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu