Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Varianz - Wikipedia

Varianz

aus Wikipedia, der freien Enzyklopädie

Dieser Artikel befasst sich mit der Varianz einer Zufallsvariablen in der schließenden Statistik beziehungsweise mit der Varianz der Grundgesamtheit (σ).
  • s2: Die Stichprobenvarianz bzw. empirische Varianz sind Begriffe der deskriptiven Statistik.
  • V(\bar X) bzw. \sigma^2_\bar X: Varianz des Stichprobenmittelwertes
  • \hat V(\bar X) bzw. \hat \sigma^2_\bar X : Geschätzte Varianz des Stichprobenmittelwertes
  • \hat \sigma^2: Geschätzte Varianz der Grundgesamtheit
Dichten zweier normalverteilter Zufallsvariablen mit unterschiedlichen Varianzen. Die orange Kurve hat eine geringere Varianz (entsprechend der Breite) als die grüne. Die Wurzel der Varianz, die Standardabweichung, kann bei der Normalverteilung an den Wendepunkten ersehen werden.
Dichten zweier normalverteilter Zufallsvariablen mit unterschiedlichen Varianzen. Die orange Kurve hat eine geringere Varianz (entsprechend der Breite) als die grüne. Die Wurzel der Varianz, die Standardabweichung, kann bei der Normalverteilung an den Wendepunkten ersehen werden.

Die Varianz ist in der Statistik ein Streuungsmaß, d.h. ein Maß für die Abweichung einer Zufallsvariable X von ihrem Erwartungswert \operatorname {E}(X). Die Varianz verallgemeinert das Konzept der Summe der quadrierten Abweichungen vom Mittelwert in einer Beobachtungsreihe. Die Varianz der Zufallsvariable X wird üblicherweise als \operatorname{V}(X), \operatorname{Var}(X) oder σ2 notiert. Ihr Nachteil für die Praxis ist, dass sie eine andere Einheit als die Daten besitzt. Dieser Nachteil kann behoben werden, indem man von der Varianz zu deren Quadratwurzel, der Standardabweichung übergeht.

In der Praxis ist die Varianz der Grundgesamtheit häufig nicht bekannt. Sie muss dann mit einem Varianzschätzer, meist mit der Stichprobenvarianz geschätzt werden.

Siehe auch: Varianzanalyse

Inhaltsverzeichnis

[Bearbeiten] Definition

Wenn \mu = \operatorname{E}(X) der Erwartungswert der quadratisch integrierbaren Zufallsvariablen X ist, dann berechnet sich die Varianz sowohl für diskrete als auch stetige Zufallsvariablen zu

\operatorname{Var}(X) := \operatorname{V}(X) := \operatorname{E}((X-\mu)^2)

Die Varianz ist also das zweite zentrale Moment einer Zufallsvariablen.

Die Varianz ist der Durchschnitt der Abweichungsquadrate vom Durchschnitt eines statistischen Merkmals.

Die Varianz steht in enger Relation zur Standardabweichung:

\sigma = \sqrt{\operatorname{Var}(X)} bzw. \sigma^2= \operatorname{E}((X-\mu)^2)

[Bearbeiten] Rechenregeln

[Bearbeiten] Verschiebungssatz

\operatorname{Var}(X)=\operatorname{E}\left(\left(X-\operatorname{E}(X)\right)^2\right)=\operatorname{E}(X^2)-\left(\operatorname{E}(X)\right)^2

[Bearbeiten] Lineare Transformation

\operatorname{Var}(aX+b) = a^2 \operatorname{Var}(X)

dies kann mittels des Verschiebungssatzes hergeleitet werden:

\operatorname{Var}(aX+b) =   \operatorname{E}[ (aX + b - \operatorname{E}(aX + b))^2 ] =  \operatorname{E}[ (aX + b - b - a \operatorname{E}(X))^2 ] =
=  \operatorname{E}[ a^2 (X - \operatorname{E}(X))^2 ] =   a^2 \operatorname{E}[ (X - \operatorname{E}(X))^2 ] =  a^2 \operatorname{Var}(X)

[Bearbeiten] Varianz von Summen von Zufallsvariablen

\operatorname{Var}\left(\sum_{i=1}^na_iX_i\right)=\sum_{i=1}^na_i^2\operatorname{Var}(X_i)+2\sum_{i=1}^n\sum_{j=i+1}^na_ia_j\operatorname{Cov}(X_i,X_j)

[Bearbeiten] Charakteristische Funktion

Die Varianz lässt sich mit dem Verschiebungssatz und der charakteristischen Funktion \varphi der Zufallsvariablen X darstellen als:

\operatorname{Var}(X)  = \frac{\varphi_X''(0)}{\mathrm{i}^{2}} - \left(\frac{\varphi_X'(0)}{\mathrm{i}}\right)^{2} = \varphi_X'(0)^2 -\varphi_X''(0)

[Bearbeiten] Beispiele

[Bearbeiten] Diskrete Zufallsvariable

Gegeben ist eine diskrete Zufallsvariable X mit den Wahrscheinlichkeiten

i 1 2 3
xi -1 1 2
f(xi) 0,5 0,3 0,2
\operatorname{V}(X) = (-1-0{,}2)^2 \cdot 0{,}5 +(1-0{,}2)^2 \cdot 0{,}3 +(2-0{,}2)^2 \cdot 0{,}2 = 1{,}56

wobei der Erwartungswert

\operatorname{E}(X) = -1 \cdot 0{,}5 + 1 \cdot 0{,}3 + 2 \cdot 0{,}2 = 0{,}2

beträgt. Mit dem Verschiebungssatz erhält man entsprechend

\operatorname{V}(X) = (-1)^2 \cdot 0{,}5 +1^2 \cdot 0{,}3 +2^2 \cdot 0{,}2 - 0{,}2^2 = 1{,}56 \ .

[Bearbeiten] Stetige Zufallsvariable

Eine stetige Zufallsvariable habe die Dichtefunktion

f(x) = \begin{cases}  \frac {1}{x} & \mbox{ falls } 1 \le x \le e \\ 0 & \mbox{ sonst } \end{cases}

Mit dem Erwartungswert

\operatorname{E}(X) = \int_1^e x \cdot \frac {1}{x} dx = e - 1

berechnet sich die Varianz mit Hilfe des Verschiebungssatzes als

\operatorname{V}(X) = \int_{-\infty}^\infty x^2 \cdot f(x) dx - (\operatorname{E}(X))^2 = \int_1^e x^2 \cdot \frac {1}{x} dx - (e - 1)^2
\qquad = \left[ \frac{x^2}{2}\right] _1^e - (e - 1)^2 = \frac{e^2}{2} - \frac{1}{2} -(e-1)^2 \approx 0{,}242

[Bearbeiten] Siehe auch

Variationskoeffizient, Kovarianz, Parameter (Statistik), Moment (Statistik), Momenterzeugende Funktion, Bestimmtheitsmaß, ANOVA, Jitter als Varianz der Latenzzeit, Normalverteilung

[Bearbeiten] Weblinks

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu