Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Varianco - Vikipedio

Varianco

El Vikipedio

Pri la aliaj sencoj de la vorto vidu apartigilon varianco (apartigilo).


En probablokalkulo kaj statistiko, varianco de hazarda variablo estas mezuro de ĝia statistika disvastiĝo, kiu indikas la tipan malproksimecon de la atendita valoro.

La varianco de reel-valora hazarda variablo estas ĝia dua centra momanto, kaj ankaŭ estas ĝia dua kumulanto. La varianco de hazarda variablo estas la kvadrato de ĝia varianca devio.

[redaktu] Difino

Se \mu = \operatorname{E}(X) estas la atendita valoro ((meznombro) de la hazarda variablo X, tiam la varianco estas

\operatorname{var}(X) = \operatorname{E}( ( X - \mu ) ^ 2 ).

Do ĝi estas la atendita valoro de la kvadrato de la devio de X for de ĝia propra meznombro. Pli simple, oni povas esprimi ĝin kiel "La averaĝa de la kvadrato de la distanco de ĉiu datenpunkto for de la meznombro". Ĝi estas tial meznombra kvadratigita dekliniĝo. La varianco de hazarda variablo X estas tipe destinita kiel \operatorname{var}(X), \sigma_X^2, aŭ simple σ2.

Noto ke la pli supra difino povas esti uzata por ambaŭ diskretaj kaj kontinuaj hazardaj variabloj.

Multaj distribuoj, kiel la koŝia distribuo, ne havas varianco ĉar la taŭga integralo diverĝas. Aparta, se distribuo ne havas atenditan valoro, ĝi ne havi ankaŭ variancon. La malo estas ne ĉiam vera: estas distribuoj por kiu la atendita valoro ekzistas, sed la varianco ne.

[redaktu] Propraĵoj

Se la varianco estas difinita, ĝi estas neniam negativa ĉar kvadratoj estas pozitivaj aŭ nulaj. La mezurunuo de varianco estas kvadrato de mezurunuo de observado. Ekzemple, se alto estas mezurita en metroj do varianco de aro de altoj estas mezurita en kvadrataj metroj. Ĉi tiu fakto estadas neoportuna kaj motivigis anstataŭe uzi kvadratan radikon de varianco, sciatan kiel varianca devio.

Eblas pruvi de la difino ke la varianco ne dependas de meznombro μ. Do, se la variablo estas "ŝovita" per valoro b prenante X+b, do varianco de la rezultanta hazarda variablo estas la sama. Male, se la variablo estas multiplikita per krusta faktoro a, la varianco estas multiplikita per a2. Pli formale, se a kaj b estas reelaj konstantoj kaj X estas hazarda variablo kies varianco estas difinita,

\operatorname{var}(aX+b)=a^2\,\operatorname{var}(X)

Alia formulo por la varianco sekvas simple el lineareco de atenditaj valoroj kaj la pli supra difina:

\operatorname{var}(X)= \operatorname{E}(X^2 - 2\,X\,\operatorname{E}(X) + (\operatorname{E}(X))^2 ) = \operatorname{E}(X^2) - 2(\operatorname{E}(X))^2 + (\operatorname{E}(X))^2 = \operatorname{E}(X^2) - (\operatorname{E}(X))^2.

Ĉi tiu estas ofta maniero por kalkuli la varianco en praktiko.

Unu kaŭzo por uzi variancon prefere al la alia kriterioj estas tio ke varianco de sumo aŭ diferenco de sendependaj hazardaj variabloj estas la sumo de iliaj variancoj. Pli malforta kondiĉo ol sendependeco, nomita kiel nekorelacieco ankaŭ sufiĉas. Ĝenerala,

\operatorname{var}(aX+bY) =a^2\, \operatorname{var}(X) + b^2\, \operatorname{var}(Y) + 2ab\, \operatorname{cov}(X, Y).

Ĉi tie \operatorname{cov} estas la kunvarianco, kiu estas nulo por sendependaj hazardaj variabloj (se ĝi ekzistas).


[redaktu] Vidu ankaŭ jenon:

  • Neegalaĵo pri lokaj kaj krustaj parametroj
  • Atendata valoro
  • Hazardemo
  • Leĝo de tuteca varianco
  • Dekliveco
  • Duonvarianco
  • Varianca devio
  • Statistika varianco
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu