New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Zwillingsparadoxon - Wikipedia

Zwillingsparadoxon

aus Wikipedia, der freien Enzyklopädie

Das Zwillingsparadoxon ist ein Gedankenexperiment, das einen scheinbaren Widerspruch in der speziellen Relativitätstheorie beschreibt. Der zugrunde liegende Gedanke wurde 1911 von dem französischen Physiker Paul Langevin korrekt analysiert (Lit.: Langevin, 1911) und 1918 auch von Albert Einstein (Lit.: Einstein, 1918). Danach fliegt einer von zwei Zwillingen mit nahezu Lichtgeschwindigkeit zu einem fernen Stern und kehrt anschließend mit derselben Geschwindigkeit wieder zurück. Nach der Relativitätstheorie schließt jeder Zwilling aus seinen Beobachtungen, dass während der Flugphasen mit konstanter Geschwindigkeit der jeweils andere Zwilling als Folge der so genannten Zeitdilatation langsamer altert. Nach der Rückkehr auf der Erde stellt sich aber heraus, dass der dort zurückgebliebene Zwilling älter geworden ist als der gereiste.

Dieses scheinbare Paradoxon beruht auf intuitiven, aber unzulässigen Annahmen über das Wesen der Zeit, wie beispielsweise der Gleichzeitigkeit. Insbesondere wird dabei der Einfluss des Richtungswechsels am Umkehrpunkt der Reise ignoriert. Durch diese Umkehr sind die beiden Zwillinge nicht gleichwertig, und nur aus der Sicht des irdischen und nicht des reisenden Zwillings liefert die Betrachtung der reinen Zeitdilatation das richtige Endergebnis.

1971 konnte bereits bei einem Interkontinentalflug eine Zeitdifferenz dieser Art indirekt durch den Vergleich zweier Atomuhren in bester Übereinstimmung mit der Vorhersage der Relativitätstheorie nachgewiesen werden. Bei diesem Hafele-Keating-Experiment spielen jedoch auch die Erdrotation und Effekte der allgemeinen Relativitätstheorie eine Rolle.

Zur Auflösung des Paradoxons im Detail sind folgende zwei Fragen zu beantworten:

  • Wie kommt es, dass jeder Zwilling den jeweils anderen langsamer altern sieht?
  • Wieso erweist sich der auf der Erde zurückgebliebene Zwilling nach der Reise als der ältere?

Inhaltsverzeichnis

Das wechselseitig langsamere Altern der Zwillinge

Zur Beantwortung der ersten Frage betrachte man, wie der Zwilling auf der Erde überhaupt feststellt, dass der fliegende langsamer altert. Dazu vergleicht er die Anzeige auf einer Uhr, die der fliegende Zwilling mit sich führt, mit zwei ruhenden Uhren, die sich am Anfang und am Ende einer bestimmten Teststrecke befinden, die der fliegende Zwilling passiert. Dazu müssen diese beiden Uhren aus der Sicht des ruhenden Zwillings natürlich auf die gleiche Zeit eingestellt worden sein. Der fliegende Zwilling liest zwar bei den Passagen dieselben Uhrstände ab, wie der ruhende, er wird aber einwenden, dass seiner Ansicht nach die Uhr am Ende der Teststrecke im Vergleich zu der am Anfang vorgeht. Der gleiche Effekt tritt auf, wenn der fliegende Zwilling analog das Altern des irdischen mit zwei Uhren beurteilt.

Ursache ist der Umstand, dass es nach der Relativitätstheorie keine absolute Gleichzeitigkeit gibt. Die Gleichzeitigkeit von Ereignissen an verschiedenen Orten und damit auch die angezeigte Zeitdifferenz von zwei dortigen Uhren wird von Beobachtern, die sich mit verschiedenen Geschwindigkeiten bewegen, unterschiedlich beurteilt. Eine genaue Betrachtung der Verhältnisse zeigt, dass die wechselseitige Einschätzung einer Verlangsamung der Zeit daher nicht zu einem Widerspruch führt. Hilfreich sind dazu die vergleichsweise anschaulichen Minkowski-Diagramme, über die sich dieser Sachverhalt grafisch und ohne Formeln nachvollziehen lässt.

Die wechselseitige Verlangsamung steht in Einklang mit dem Relativitätsprinzip, das besagt, dass alle Beobachter, die sich mit konstanter Geschwindigkeit gegeneinander bewegen, völlig gleichberechtigt sind. Man spricht von Inertialsystemen, in denen sich diese Beobachter befinden.

Die Umkehrphase des reisenden Zwillings

Zur Beantwortung der zweiten Frage ist die Abbrems- beziehungsweise Beschleunigungsphase zu betrachten, die für die Rückkehr des fliegenden Zwillings erforderlich ist. Während dieser Phase vergeht nach Einschätzung des fliegenden Zwillings die Zeit auf der Erde schneller. Der dort zurückgebliebene Zwilling altert dabei soweit nach, dass er trotz des langsameren Alterns während der Phasen mit konstanter Geschwindigkeit im Endergebnis der Ältere ist, so dass sich auch aus der Sicht des fliegenden Zwillings kein Widerspruch ergibt. Das Ergebnis nach der Rückkehr steht auch nicht im Widerspruch zum Relativitätsprinzip, da die beiden Zwillinge aufgrund der Beschleunigung, die nur der fliegende erfährt, bezüglich der Gesamtreise nicht als gleichwertig betrachtet werden können.

Ursache dieser Nachalterung ist wiederum die Relativität der Gleichzeitigkeit. Während der Beschleunigung wechselt der fliegende Zwilling gewissermaßen ständig in neue Inertialsysteme. In jedem dieser Inertialsysteme ergibt sich jedoch für den Zeitpunkt, der gleichzeitig auf der Erde herrscht, ein anderer Wert und zwar derart, dass der fliegende Zwilling auf eine Nachalterung des irdischen schließt. Je weiter sich die Zwillinge voneinander entfernt haben, umso größer ist dieser Effekt.

Weg-Zeit-Diagramm für v=0,6c. Der Zwilling auf der Erde bewegt sich auf der Zeitachse von A1 nach A4. Der reisende Zwilling nimmt den Weg über B. Linien der Gleichzeitigkeit aus der Sicht des reisenden Zwillings sind für die Hinreise rot und für die Rückreise blau eingezeichnet. Die Punkte auf den Reisewegen markieren jeweils ein Jahr Eigenzeit.
Weg-Zeit-Diagramm für v=0,6c. Der Zwilling auf der Erde bewegt sich auf der Zeitachse von A1 nach A4. Der reisende Zwilling nimmt den Weg über B. Linien der Gleichzeitigkeit aus der Sicht des reisenden Zwillings sind für die Hinreise rot und für die Rückreise blau eingezeichnet. Die Punkte auf den Reisewegen markieren jeweils ein Jahr Eigenzeit.

Die Verhältnisse sind im dargestellten Weg-Zeit-Diagramm einer Reise von A nach B und wieder zurück mit 60 % der Lichtgeschwindigkeit c dargestellt. Die Bahn des zurückbleibenden Zwillings verläuft entlang der Zeitachse von A1 nach A4, der fliegende nimmt den Weg über B. Jede horizontale Linie im Diagramm entspricht Ereignissen, die aus der Sicht des Zwillings auf der Erde gleichzeitig erfolgen. Der fliegende Zwilling dagegen schätzt beim Hinflug alle Ereignisse auf den roten Linien als gleichzeitig ein und beim Rückflug die auf den blauen. Unmittelbar vor seiner Ankunft am Ziel B befindet sich der ruhende Zwilling nach Ansicht des fliegenden daher bei A2 und erscheint daher weniger gealtert. Während der Umkehrphase, die hier als so kurz angenommen wurde, dass sie im Diagramm nicht zu erkennen ist, schwenken die Linien der Gleichzeitigkeit für den fliegenden Zwilling, und sein Bruder auf der Erde altert bis zum Punkt A3 nach. Während der Rückreise nach A4 scheint der Zwilling auf der Erde wieder langsamer zu altern. Da die dargestellten Neigungen der Linien der Gleichzeitigkeit nur von der Reisegeschwindigkeit vor und nach der Umkehrphase abhängen, ist die Stärke der Beschleunigung für die Nachalterungszeit nicht relevant.

Der irdische Zwilling spürt von dieser Nachalterung nichts, sondern es handelt sich, wie beschrieben, um einen Effekt, der im Rahmen der speziellen Relativitätstheorie lediglich die Folge einer Beschreibung der Vorgänge aus unterschiedlichen Koordinatensystemen heraus ist, zwischen denen der reisende Zwilling wechselt. Das wird besonders deutlich, wenn man Ereignisse betrachtet, die in Reiserichtung noch weiter von der Erde entfernt sind als der umkehrende Zwilling. Nach Einschätzung des umkehrenden Zwillings läuft dort ab einem gewissen Abstand die Zeit während der Beschleunigungsphase rückwärts. Die Situation ist vergleichbar mit Objekten in einem gewissen seitlichen Abstand vom Straßenrand, die sich schräg hinter einem Autofahrer befinden, die aber nach einer scharfen Kurve im rechten Winkel plötzlich wieder schräg vor ihm liegen können, so dass er ein zweites mal an ihnen vorbeifährt. In diesem Fall ist es die Drehung des Bezugssystems des Autos, die diesen Gegenstand scheinbar nach vorne befördert hat.

Bei all diesen Betrachtungen wurde vorausgesetzt, dass die Zwillinge bei ihrer Einschätzung des Geschehens nicht das, was sie unmittelbar sehen, für die gleichzeitig anderswo stattfindende Realität halten, sondern die ihnen bekannte Ausbreitungsgeschwindigkeit des Lichtes berücksichtigen.

So kann beispielsweise der beschriebene Nachalterungssprung nicht unmittelbar beobachtet werden, da die zugehörigen Lichtsignale, die von A2 und A3 auf der Erde ausgehen, erst während der Rückreise beim reisenden Zwilling eintreffen.

Variante ohne Beschleunigungsphasen

Durch Einführen einer dritten Person lässt sich eine Variante des Zwillingsparadoxons formulieren, die völlig ohne Beschleunigungsphasen auskommt. Dabei passiert der reisende Zwilling den Stern mit gleich bleibender Geschwindigkeit, während die dritte Person gleichzeitig den Stern mit einer gleich großen aber zur Erde gerichteten Geschwindigkeit passiert, wobei beide lediglich ihre Uhren abgleichen. Wenn beide auch die Erde mit konstanter Geschwindigkeit passieren und dabei lediglich mit dem irdischen Zwilling Uhrenstände vergleichen, findet überhaupt keine Beschleunigung statt. Die mathematische Behandlung dieses Szenarios und sein Endergebnis sind identisch mit dem zuvor geschilderten, sofern die Dauer der Beschleunigungsphasen vernachlässigbar kurz ist. Diese Variante mit drei Personen demonstriert, dass nicht unbedingt die Beschleunigung als Phänomen das Zwillingsparadoxon auflöst, sondern der Umstand, dass das Geschehen während der Hin- und Rückreise aus unterschiedlichen Inertialsystemen mit unterschiedlichen Einschätzungen der Gleichzeitigkeit heraus beurteilt wird.

Bezug zur allgemeinen Relativitätstheorie

Anders als vielfach behauptet lässt sich das Zwillingsparadoxon vollständig im Rahmen der speziellen Relativitätstheorie auflösen. Aus der Sicht der allgemeinen Relativitätstheorie lassen sich jedoch die Vorgänge während der Beschleunigungsphase zusätzlich tiefergehend interpretieren (Lit.: Einstein, 1918). So lässt sich ein Bezug zu dem Umstand herstellen, wonach Uhren im Gravitationsfeld an verschiedenen Stellen unterschiedlich schnell gehen. Der fliegende Zwilling kann seine Umkehrphase so interpretieren, dass er sich in einem homogenen Gravitationsfeld befindet, gegen das er mit seinem Raketentriebwerk ankämpft, derart, dass er sich ständig an der selben Stelle befindet. Diese beiden Betrachtungsweisen sind in der allgemeinen Relativitätstheorie völlig gleichwertig. Das beobachtete raschere Altern des irdischen Zwillings erklärt der Reisende in diesem Fall damit, dass dieser sich auf einem höheren Gravitationspotential befindet. Aus dem gleichen Grund würde auch ein Bewohner eines Neutronensterns alle Vorgänge an seinem Himmel rascher ablaufen sehen. Je stärker die Beschleunigung in der Umkehrphase ist, umso größer ist diese Potenzialdifferenz, umso kleiner ist aber auch die Dauer der Umkehrphase. Der erwähnte Nachalterungseffekt ist daher auch im Rahmen dieser Interpretation von der Stärke der Beschleunigung völlig unabhängig. Das Fehlen von Massen, die sich als Ursache für das Gravitationsfeld interpretieren lassen, stellt kein Problem dar, da in der allgemeinen Relativitätstheorie die Stärke von Gravitationsfelder relativ ist und damit vom betrachteten Koordinatensystem abhängt, analog wie beispielsweise die kinetische Energie eines Körpers in der newtonschen Mechanik.

Der Bereich in größerer Entfernung, in dem die Zeit aus der Sicht des beschleunigten Zwillings in der weiter oben beschriebenen Darstellung rückwärts zu laufen scheint, befindet sich übrigens hinter einem Horizont, aus dem kein Licht den umkehrenden Zwilling jemals erreicht, sofern die Beschleunigung andauert. Dieser Bereich hat damit den Charakter des Inneren eines schwarzen Loches mit einem Horizont, auf dem die Zeit aus der Sicht eines äußeren Betrachters stillsteht, wie bei schwarzen Löchern üblich. Es treten damit auch für den beschleunigten Zwilling keine rückwärts ablaufenden Vorgänge auf.

Andere Reisewege

Der fliegende Zwilling erweist sich nach der Rückkehr zur Erde unabhängig von den Details seiner Flugroute immer als der weniger gealterte. Das bedeutet, dass die zeitlich längste Reise von irgendeiner Stelle in Raum und Zeit zu einer anderen stets diejenige ist, die mit konstanter Geschwindigkeit, also ohne Beschleunigung erfolgt. In der Relativitätstheorie werden Raum und Zeit zur so genannten Raumzeit vereinigt. Jeder Reisende beschreibt in ihr eine Kurve, deren Länge die Zeit repräsentiert, die für ihn dabei vergeht. Ein wesentlicher Unterschied zwischen dem dreidimensionalen Raum und der vierdimensionalen Raumzeit besteht daher darin, dass eine gerade Strecke im Raum die kürzeste Verbindung zwischen zwei Punkten darstellt, die ein Reisender zurücklegen kann, während es in der Raumzeit die längste ist.

Zahlenbeispiel

Für eine Hin- und Rückreise mit 60 % der Lichtgeschwindigkeit zu einem Ziel in 3 Lichtjahren Abstand ergeben sich folgende Verhältnisse (siehe obige Grafik): Aus der Sicht des Zwillings auf der Erde sind für Hin- und Rückweg jeweils 5 Jahre erforderlich. Der Faktor für die Zeitdilatation und die Längenkontraktion beträgt 0,8. Das bedeutet, dass der fliegende Zwilling auf dem Hinweg nur um 5x0,8=4 Jahre altert. Dieser erklärt sich diesen geringeren Zeitbedarf damit, dass die Wegstrecke sich durch die Längenkontraktion bei seiner Reisegeschwindigkeit auf 3x0,8=2,4 Lichtjahre verkürzt hat. Da nach seiner Einschätzung auf der Erde die Zeit auch langsamer verstreicht, scheint auf der Erde unmittelbar vor seiner Ankunft am fernen Stern lediglich 4x0,8=3,2 Jahre verstrichen zu sein. Während der Umkehrphase verstreichen aber auf der Erde seiner Ansicht nach zusätzlich 3,6 Jahre. Zusammen mit den 3,2 Jahren auf dem Rückweg sind also auch aus der Sicht des fliegenden Zwillings auf der Erde insgesamt 10 Jahre verstrichen, während er selbst lediglich 8 Jahre gealtert ist.

Austausch von Lichtsignalen

 Wege jährlich ausgesandter Lichtsignale. Links Signale, die der irdische Zwilling aussendet und rechts die des reisenden. Die rot dargestellten empfängt bzw. sendet der Reisende vor der Umkehr und die blauen danach. Aufgrund des relativistischen Doppler-Effektes werden die Signale zunächst mit der halben und später mit der doppelten Frequenz empfangen.
Wege jährlich ausgesandter Lichtsignale. Links Signale, die der irdische Zwilling aussendet und rechts die des reisenden. Die rot dargestellten empfängt bzw. sendet der Reisende vor der Umkehr und die blauen danach. Aufgrund des relativistischen Doppler-Effektes werden die Signale zunächst mit der halben und später mit der doppelten Frequenz empfangen.

Bisher wurde dargestellt, was die Beobachter unter Berücksichtigung der ihnen bekannten Ausbreitungsgeschwindigkeit des Lichtes für das reale Geschehen halten. Im folgenden sei beschrieben, was beide Zwillinge unmittelbar sehen, wenn sie periodisch, beispielsweise einmal pro Jahr, ein Lichtsignal zu ihrem Bruder senden. Die Wege von Lichtsignalen im obigen Weg-Zeit-Diagramm sind Geraden mit einer Neigung von 45°. Bezogen auf dieses Beispiel ergeben sich damit die nebenstehenden Diagramme. Danach treffen die rot dargestellten Signale, die der reisende Zwilling während der Hinreise empfängt (links) und auch die, die er in dieser Zeit sendet (rechts), mit der halben Frequenz beim jeweiligen Empfänger ein. Die blau dargestellten Signale, die der reisende Zwilling während der Rückreise empfängt (links) und sendet (rechts), treffen dagegen mit der doppelten Frequenz ein. Es handelt sich in beiden Fällen um den relativistischen Doppler-Effekt, der in Übereinstimmung mit dem Relativitätsprinzip für beide Zwillinge gleich stark ausfällt.

Damit führt die Annahme, beide Zwillinge wären nach der Rückkehr gleich alt, so dass beide Zwillinge gleich viele Signale vom anderen empfangen hätten, nun aber zu einem Widerspruch. Denn während der reisende Zwilling am Umkehrpunkt und damit nach der halben Reisezeit sofort die zeitlich komprimierten Signale erhält, erreichen den irdischen Zwilling die gedehnten Signale noch länger. Daher können nicht beide in der gleichen Gesamtzeit gleich viele Signale erhalten haben.

Bedingt durch eine Kombination von relativistischen Effekten und Laufzeiteffekten sieht der reisende Zwilling den irdischen daher zunächst in 4 Jahren um 2 Jahre altern und in weiteren 4 Jahren um 8 Jahre, insgesamt also um 10 Jahre. Der irdische Zwilling sieht entsprechend den Reisenden zunächst in 8 Jahren um 4 Jahre altern und anschließend in 2 Jahren um 4 Jahre, insgesamt also um 8 Jahre. Dieses widerspruchsfreie Endergebnis ist dabei allerdings schon durch die Position der Zeitmarken auf den Reisewegen in der ersten Grafik des Artikels vorgegeben.

Literatur

  • P. Langevin: L'évolution de l'espace et du temps, Scienta, Heft 10, S. 31-54 (1911)
  • A. Einstein: Dialog über Einwände gegen die Relativitätstheorie, Die Naturwissenschaften, Heft 48, S. 697-702 (1918)

Weblinks

Wikipedia:Lesenswerte Artikel
Lesenswerte Artikel
Wikipedia:Lesenswerte Artikel
Lesenswerte Artikel
Dieser Artikel wurde in die Liste der Lesenswerten Artikel aufgenommen.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu