Μετρικός χώρος
Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Στα μαθηματικά, μετρικός χώρος είναι ένα σύνολο στο οποίο έχει οριστεί μία έννοια "απόστασης". Συγκεκριμένα, ας είναι X ένα μη κενό σύνολο, και μία συνάρτηση. Η συνάρτηση θα λέγεται μετρική, και το ζεύγος (X,d) θε λέγεται μετρικός χώρος, αν για κάθε ικανοποιεί τα ακόλουθα:
- (αξίωμα ταύτισης)
- (αξίωμα συμμετρίας)
Σε έναν μετρικό χώρο, μπορεί να δείξει κανείς ότι , για κάθε . Τυπικό παράδειγμα μετρικού χώρου αποτελεί ο τριδιάστατος ευκλείδειος χώρος, εφοδιασμένος με την ευκλείδεια μετρική.
[Επεξεργασία] Γενικεύσεις
Ένα σύνολο εφοδιασμένο με μία συνάρτηση, η οποία ικανοποιεί τα αξιώματα συμμετρίας και τριγώνου, αλλά αντί του αξιώματος ταύτισης, ικανοποιεί το
λέγεται ψευδομετρικός χώρος. Ακόμη, ένα σύνολο εφοδιασμένο με μια συνάρτηση που ικανοποιεί το αξίωμα ταύτισης και το αξίωμα τριγώνου, αλλά όχι απαραίτητα και το αξίωμα συμμετρίας, λέγεται οιονεί μετρικός χώρος (quasi-metric space) ή μη συμμετρικός μετρικός χώρος.