Cepstre
Un article de Wikipédia, l'encyclopédie libre.
Le cepstre (prononcé kaipstre) d'un signal x(t) est une transformation de ce signal du domaine temporel vers un autre domaine analogue au domaine temporel. Pour rappeler le fait que l'on effectue une transformation inverse à partir du domaine fréquentiel, les dénominations des notions sont des anagrammes de celles utilisées en fréquentiel. Ainsi le spectre devient le cepstre, la fréquence une quéfrence, un filtrage un liftrage,...
Le cepstre a tout d'abord été défini en 1963 comme étant le résultat de la transformée de Fourier appliquée au logarithme de la transformée de Fourier du signal.
Néanmoins, une autre définition apparue depuis est la transformée de Fourier inverse appliquée au logarithme de la transformée de Fourier du signal.
Cette seconde définition, bien que contestée (à discuter), est la définition la plus répandue, voire la seule utilisée, parmi chercheurs et professionnels du domaine du traitement du signal.
Sommaire |
[modifier] Cepstre complexe & cepstre réel
Le cepstre complexe utilise le logarithme appliqué à la valeur complexe de la transformée de Fourier. Le cepstre complexe contient donc à la fois l'information d'amplitude et de phase du spectre du signal, ce qui va permettre notamment de reconstruire le signal de départ.
Le cepstre réel, lui, n'utilise que l'amplitude du spectre de ce signal, il perd donc la partie de l'information contenue dans la phase et l'on ne peut donc pas reconstruire parfaitement le signal de départ à partir de ce cepstre.
La différence entre la définition de 1963 et celle d'aujourd'hui vient peut-être de là, la définition de 1963 étant au départ celle du cepstre réel, l'utilisation d'une transformée inverse serait simplement due à la généralisation aux valeurs complexes.
[modifier] Autres méthodes
Le calcul du cepstre en appliquant l'une des formules ci-dessus est laborieux. D'autres méthodes ont donc été développées pour accélérer ce processus.
[modifier] LPCC
Le calcul des coefficients cepstraux peut se faire à partir de l'analyse LPC du signal. Ces coefficients sont appelés les LPCC (linear prediction cepstral coefficients).
Considérons les p + 1 coefficients retournés par une analyse LPC :
Les coefficients cepstraux de 1 à p peuvent être calculés par la formule
- ;
les coefficients cepstraux de p + 1 jusqu'au degré Nc désiré peuvent être calculés en utilisant
- ;
Il a été démontré que ces coefficients sont équivalents au cepstre complexe.
[modifier] MFCC
Les MFCC ou Mel-Frequency Cepstral Coefficients sont des coefficients cepstraux calculés par une transformée en cosinus discrète appliquée au spectre de puissance d'un signal. Les bandes de fréquence de ce spectre sont espacées logarithmiquement selon l'échelle de Mel.
[modifier] Calcul
- Calcul de la transformée de Fourier de la frame à analyser
- Pondération du spectre d'amplitude (ou de puissance selon les cas) par un banc de filtres triangulaires espacés selon l'échelle de Mel
- Calcul de la transformée en cosinus discrète du log-mel-spectre
Les coefficients résultants de cette DCT sont les MFCCs.
[modifier] Applications
Le cepstre d'un signal est utilisé par exemple en traitement de la parole et en reconnaissance vocale. Egalement en maintenance vibratoire des machines industrielles.
[modifier] Vocabulaire
[modifier] Référence
- (en) Tukey, J. W., B. P. Bogert and M. J. R. Healy: "The Quefrency Alanysis of Time Series for Echoes: Cepstrum, pseudo-Autocovariance, Cross-Cepstrum, and Saphe-Cracking". Proceedings of the Symposium on Time Series Analysis (M. Rosenblatt, Ed) Chapter 15, 209-243. New York: Wiley.