Géométrie riemannienne
Un article de Wikipédia, l'encyclopédie libre.
Cet article est une ébauche à compléter concernant la géométrie, vous pouvez partager vos connaissances en le modifiant. |
La géométrie riemannienne est une branche des mathématiques nommée en l'honneur du mathématicien Bernhard Riemann qui introduisit le concept fondateur de variété. Elle étend les méthodes de la géométrie analytique en utilisant des coordonnées locales pour effectuer l'étude d'espaces courbes sur lesquels existent des notions d'angle et de longueur.
Les concepts les plus notables de la géométrie riemannienne sont la courbure de l'espace étudié et les géodésiques, courbes résolvant un problème de plus court chemin sur cet espace. Plus généralement, la géométrie riemannienne a pour but l'étude locale et globale des variétés riemanniennes, c'est-à-dire les variétés différentielles munies d'une métrique riemannienne, voire des fibrés vectoriels riemanniens.
Il existe aussi des variétés pseudo-riemanniennes, généralisant les variétés riemanniennes, qui en restent assez proche par bien des aspects, et qui permettent notamment de modéliser l'espace-temps en physique.
Sommaire |
[modifier] Histoire
Le premier pas de la géométrie riemannienne remonte incontestablement aux travaux de Bernhard Riemann au dix-neuvième siècle.
La géométrie riemannienne s'est fortement développée durant la seconde moitié du XXe siècle. Mais les premiers travaux dans ce domaine se confondent avec la naissance du concept de variété différentielle.
[modifier] Le cadre
[modifier] Problèmes de plus courts chemins
[modifier] Géodésiques : aspects local et global
[modifier] Transport parallèle
[modifier] Courbure et topologie
[modifier] Courbure positive
[modifier] Courbure négative
[modifier] Références
- (en) Jürgen Jost, Riemannian Geometry and Geometric Analysis [détail des éditions]
- (en) Marcel Berger, A Panoramic View of Riemannian Geometry [détail des éditions] - Comme l'indique son titre, le grand géomètre français nous convie ici à une longue (824 pages) promenade panoramique dans le monde de la géométrie Riemannienne. Les divers résultats sont pour la plupart donnés sans démonstrations détaillées, mais avec les références idoines pour le lecteur qui souhaiterait mettre « les mains dans le cambouis ». Le dernier chapitre donne les bases techniques du domaine.
Articles de géométrie | |||
Géométrie - Géométrie affine - Géométrie euclidienne - Géométrie projective - Géométrie hyperbolique - Géométrie non euclidienne - Géométrie synthétique - Programme d'Erlangen - Géométrie du XXe siècle - Topologie différentielle - Topologie algébrique - Géométrie différentielle - Géométrie riemannienne - Géométrie symplectique - Géométrie algébrique | |||
Accéder au portail de la géométrie |