Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Polynôme d'endomorphisme - Wikipédia

Polynôme d'endomorphisme

Un article de Wikipédia, l'encyclopédie libre.

En algèbre linéaire on utilise fréquemment la notion de polynôme d'endomorphisme (ou de matrice), qui est une combinaison linéaire de puissances de l'endomorphisme.

Pour un endomorphisme u d'un espace vectoriel E sur \mathbb K elle donne à E une structure de \mathbb K[X]-module.

L'application la plus intéressante réside dans la recherche des polynômes annulateurs de l'endomorphisme : les relations caractéristiques des projecteurs (p2=p), des symétries (s2=Id) constituent les exemples les plus simples de polynômes annulateurs.

De plus la recherche de polynômes annulateurs permet de déterminer les valeurs propres d'une matrice sans en calculer le polynôme caractéristique, voire de prouver très simplement la diagonalisation.

Sommaire

[modifier] Intérêt du concept

Si u est l'endomorphisme que nous étudions, on peut l'appliquer deux fois à un vecteur, on note alors u2 l'application associée. En fait, on peut l'appliquer autant de fois qu'on le souhaite. Ceci nous permet d'élever un endomorphisme à une puissance entière. On peut aussi additionner plusieurs endomorphismes et les multiplier par un nombre. En conséquence il est possible d'appliquer un polynôme à un endomorphisme.

Ce concept est archétypal d'une démarche souvent féconde en mathématique. Elle consiste à établir un pont entre deux théories. Dans cet article le pont est établi entre les polynômes et les applications linéaires. Il est bâti sous la forme d'un morphisme d'algèbre entre les polynômes et les endomorphismes. Il permet alors d'exporter les propriétés de commutativité, des idéaux principaux, d'appliquer l'identité de Bézout ou une interpolation lagrangienne. Par delà l'aspect élégant d'une telle démarche, l'essentiel des théorèmes strictement associés aux applications linéaires se démontre sans trop de dédales calculatoires.

Dans la pratique, cette démarche permet de démontrer l'existence du polynôme minimal et de déterminer la structure des polynômes annulateurs. Elle propose une approche permettant de comprendre l'origine de la notion de vecteur propre généralisé ainsi que de sous-espace caractéristique. Dans le cas où le corps est algébriquement clos, elle permet même de fournir une réduction simple de l'endomorphisme, dite réduction de Jordan. Elle permet alors de comprendre pourquoi le polynôme caractéristique est un multiple du polynôme minimal, et fournit donc une démonstration du théorème de Cayley-Hamilton. Elle est enfin la base d'une famille d'algorithmes souvent largement plus rapides qu'une approche par les déterminants.

[modifier] Définition et premières propriétés

Soient E\; un \mathbb K espace vectoriel. nous utilisons la notation usuelle {L}(E)\; pour désigner l'ensemble des endomorphismes et K[X]\; désigne ici l'anneau des polynômes. Soit u \in {L}(E) un endomorphisme et P=a_0+a_1X+...+a_pX^p \in K[X] un polynôme.

On définit P[u]\in L(E) par P[u]=a_0 Id_E+a_1u+a_2u^2+...+a_pu^p\,. C'est la définition naturelle d'un polynôme d'endomorphisme.

Si on note u^0=Id\; on peut écrire, pour P=\sum_{k=0}^p a_k X^k, P[u]=\sum_{k=0}^p a_k u^k

L'anneau des polynômes peut être considéré comme un espace vectoriel sur \mathbb K. Avec ses trois opérations: addition, produit scalaire et multiplication, il forme une structure que l'on appelle une algèbre. Il en est de même pour les endomorphismes munis de la composition comme multiplication. Il est à noter qu'à la différence des endomorphismes, les polynômes forment une algèbre commutative. Il n'est pas surprenant que l'application naturelle de l'espace des polynômes dans l'ensemble des endomorphismes soit un morphisme d'algèbre. Un morphisme d'algèbre est une application respectant les trois opérations de l'algèbre, l'addition, le produit scalaire et la multiplication.

  • L'application \psi_u\;, qui à P\mapsto P[u] est un morphisme de \mathbb Kalgèbres de \mathbb K[X] dans L(E)\;.
  • L'image de \psi_u\; est une sous-algèbre abélienne de L(E)\;.

Cela signifie que deux polynômes du même endomorphisme commutent entre eux. Cette propriété provient du fait que la commutativité est toujours transportée par un morphisme.

  • Si x est un vecteur propre de valeur propre λ, alors il est aussi vecteur propre de l'endomorphisme P[u]\; avec la valeur propre P(\lambda)\;.

En particulier si P[u] = 0 alors les valeurs propres sont parmi les racines de P. Cependant la réciproque n'est pas vraie, toutes les racines de P ne sont pas forcément valeurs propres de u.


[modifier] Idéaux annulateurs

Le reste de l'article ne considère que le cas où l'espace vectoriel est de dimension finie n.

Un morphisme entre deux structures est un outil puissant. Les propriétés de l'une des structures se trouvent transportées par le morphisme dans son image. Le paragraphe précédent utilise cette propriété pour démontrer le caractère commutatif de l'espace des polynômes d'un endomorphisme particulier. Le noyau d'un morphisme d'algèbre est une sous algèbre. Cette propriété est un des éléments permettant d'établir la définition et les propositions suivantes:

  • L'ensemble des polynômes qui annule un endomorphisme est un idéal principal non réduit à 0, on l'appelle Idéal annulateur. On appelle polynôme annulateur élément de l'idéal annulateur. Il existe un unique polynôme unitaire qui l'engendre, il est appelé polynôme minimal.

Un idéal est un sous-anneau stable par multiplication par tout élément de l'anneau. Tout idéal est un sous-anneau, cependant la réciproque n'est pas toujours vraie.

  • Soit x un vecteur de E et u un endomorphisme, alors l'ensemble des polynômes de u qui annulent x est un idéal principal contenant l'idéal annulateur. On l'appelle idéal annulateur de x. Il existe un unique polynôme unitaire qui l'engendre, il est appelé polynôme minimal de x.

Il est possible de remarquer que l'idéal annulateur, qui annule tout vecteur annule aussi x. L'idéal annulateur de x contient donc l'idéal annulateur de u. L'intérêt du concept d'idéal annulateur réside dans le fait qu'il permet de trouver des sous-espaces stables de u. Sur ces sous-espaces stables, l'endomorphisme peuvent s'exprimer plus simplement. Cette démarche consistant à décomposer l'espace E en sous-espaces stables et en somme directe procède de la démarche dit de réduction d'endomorphisme.

  • Le noyau d'un polynôme d'endomorphisme de u est un sous-espace vectoriel stable par u.
  • Soit (P_i[X])\; une famille finie de polynômes premiers entre deux deux à deux. Alors la famille des (Ker P_i[u])\; est une somme directe de sous-espaces stables par u qui engendre l'espace Ker\prod_i P_i[u]\;. De plus, les projecteurs associés s'expriment comme des polynômes en u.

La dernière propriété est essentielle pour la réduction d'endomorphisme. Elle intervient dans la suite de l'article, pour l'analyse du polynôme minimal et pour l'analyse du cas où il scindé. Elle intervient enfin dans la décomposition de Dunford.


[modifier] Polynôme minimal

Article détaillé: Polynôme minimal

Le polynôme minimal cache une décomposition en somme direct de sous-espaces stables. Cette décomposition est au cœur de la compréhension de la structure d'un endomorphisme. Elle correspond à la décomposition du polynôme en facteurs premiers entre eux. Elle permet d'établir des théorèmes parmi les plus importants de l'algèbre linéaire pure. Elle nous renseigne sur l'existence d'un vecteur dont le polynôme minimal est le polynôme minimal de l'endomorphisme, elle donne un majorant du degré de ce polynôme, elle permet de trouver des réductions puissantes dans le cas ou le polynôme est scindé, elle donne une condition nécessaire et suffisante de diagonalisation. Enfin elle permet de démontrer le théorème de Cayley-Hamilton.

[modifier] Décomposition en somme directe de sous-espaces stables

  • Soit (\chi_i)\; une décomposition en facteurs tous de degré supérieur à 0 et premier entre eux du polynôme minimal\chi\; d'un endomorphisme u. Alors la suite des noyaux (Ker \chi_i[u])\; est une décomposition en somme directe de l'espace E de sous-espaces stables par l'endomorphisme.
  • Il existe un vecteur x de E dont le polynôme annulateur est égal au polynôme annulateur de l'endomorphisme.
  • Le polynôme minimal est de degré inférieur ou égal à n.


[modifier] Cas ou le polynôme minimal est scindé

Article détaillé: Réduction d'endomorphisme

Dire que le polynôme minimal est scindé signifie qu'il s'exprime comme produit de puissances de polynômes du premier degré. Si l'on note \chi\; le polynôme minimal, cela signifie que:

\chi [X]=\prod_i (X-\lambda_i)^{n_i}\;

Si l'on note E_i\; le noyau de l'endomophisme (u-\lambda_i )^{n_i}\;, alors le paragraphe précédent nous indique que la suite (E_i)\; forme une somme directe de l'espace E de sous-espaces non réduits à 0 et stables par l'endomorphisme. On appelle ces sous-espaces les sous-espaces caractéristiques. Cette approche permet d'effectuer la première étape dans la réduction des endomorphismes en dimension finie et si le polynôme minimal est scindé. Les deux principales propriétés de cette approche sont les suivantes:

  • L'espace E est somme directe de ses sous-espaces caractéristiques.
  • L'endomorphisme u est la somme d'un endomorphisme diagonalisable et d'un endomorphisme nilpotent. Les deux endomorphismes commuttent entre eux.

Les démonstrations et l'analyse complète se trouvent dans l'article Réduction d'endomorphisme au paragraphe sur la décomposition de Dunford.

[modifier] Diagonalisabilité

Article détaillé: Diagonalisation

L'utilisation des polynômes fournit un critère spectaculaire de diagonalisabilité. Ce critère est un cas particulier du paragraphe précédent.

  • Un endomorphisme u est diagonalisable si et seulement son polynôme minimal est scindé sur K et à racines simples.

C'est en effet un cas particulier du cas précédent. Si les racines sont simples alors la composante nilpotente est nulle et le résultat est démontré. Si l'endomorphisme est diagonalisable alors les espaces propres se confondent avec les espaces caractéristiques et toute valeur propre possède une multiplicité égale à 1.

[modifier] Théorème de Cayley-Hamilton

Article détaillé : Théorème de Cayley-Hamilton

Il existe un polynôme important associé à un endomorphisme. C'est celui définit par le déterminant de l'application u-\lambda Id\;. On l'appelle polynôme caractéristique. Il est important car ses racines sont les valeurs propres de l'endomorphisme associé. Cette propriété est partagée par le polynôme minimal. Elle amène donc la question, quel est le rapport entre polynôme caractéristique et polynôme minimal? La réponse est le théorème de Cayley-Hamilton:

  • Le polynôme minimal divise le polynôme caractéristique.

Pour s'en rendre compte, il est plus simple de plonger le corps dans sa clôture algébrique. Dans ce contexte, il est possible d'appliquer une Réduction de Jordan à l'endomorphisme. Sa représentation matricielle est alors triangulaire avec comme valeurs diagonales les valeurs propres. Leurs ordre de multiplicité dans le polynôme caractéristique est la dimension de l'espace caractéristique de valeur propre associée. Cette multiplicité est toujours supérieure à celle du polynôme minimal qui a pour multiplicité l'ordre de l'application nilpotente associée.

Il existe une démonstration qui ne fait pas appel à la construction des polynômes d'endomorphismes, elle est donnée dans l'article Théorème de Cayley-Hamilton.

[modifier] Applications

Voir l'article Polynôme minimal

Voir l'article Décomposition de Dunford

Articles de mathématiques en rapport avec l'algèbre linéaire
Espace vectoriel | Base | Dimension | Matrice | Application linéaire | Déterminant | Trace | Rang | Théorème des facteurs invariants | Réduction d'endomorphisme | Réduction de Jordan | Décomposition de Dunford | Valeur propre | Polynôme caractéristique | Forme linéaire | Espace dual | Orthogonalité | Produit scalaire | Produit vectoriel | Polynôme d'endomorphisme | Polynôme minimal | Tenseur | Covecteur | Algèbre multilinéaire
Modifier
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu