Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Relatív prímek - Wikipédia

Relatív prímek

A Wikipédiából, a szabad lexikonból.

A matematikában az a és b egész számok esetén azt mondjuk, hogy az a a b-hez relatív prím, vagy egyszerűen a és b relatív prím, ha az 1-en és −1-en kívül nincs más közös osztójuk. Vagy ami ezzel ekvivalensen, ha a és b legnagyobb közös osztója 1.

Például a 6 és a 35 relatív prímek, de a 6 és a 27 nem, mert mindkettő osztható 3-mal. Minden prímszám tetszőleges másikhoz relatív prím, illetve egy prímszámhoz minden nála kisebb természetes szám relatív prím. Az 1 minden egész számhoz relatív prím; a 0 csak az 1-hez és a −1-hez.

Annak gyors eldöntésére, hogy két szám relatív prím-e alkalmas az euklideszi algoritmus.

Az Euler-függvény (vagy Euler-féle fí-függvény) pozitív egész n-ekre megadja az 1 and n − 1 közötti, n-hez képest relatív prím egészek számát.

Tartalomjegyzék

[szerkesztés] Tulajdonságok

1. ábra: a 4 és a 9 relatív prímek, mert az átló egyetlen rácsponton sem megy keresztül
1. ábra: a 4 és a 9 relatív prímek, mert az átló egyetlen rácsponton sem megy keresztül

Az „a és b relatív prímek” kijelentéssel ekvivalens állítások:

  • Léteznek x és y egész számok úgy, hogy ax + by = 1 (lásd még: Bézout-tétel).
  • A b egész számhoz találunk olyan y egész számot, hogy by ≡ 1 (mod a). Más szavakkal, a b által reprezentált elem inverálható elem a moduló a maradékosztályok Za gyűrűjében.

A fentiekből következően, ha a és b relatív prímek, és brbs (mod a), akkor rs (mod a) (mert „oszthatunk b-vel” modulo a számolva). Továbbá, ha a és b1 relatív prímek, valamint a és b2 is relatív prímek, akkor a és b1b2 szintén relatív prímek (mert az egységelemek szorzata szintén egységelem).

Ha a és b relatív prímek, és a osztója a bc szorzatnak, akkor a osztója c-nek. Ez tekinthető Euklidész híres lemmájának általánosításaként, amely kimondja, hogy ha p prím, és p osztója a bc szorzatnak, akkor vagy p osztója b-nek, vagy p osztója c-nek. Ez tekinthető Euklidész híres lemmájának általánosításaként, amely kimondja, hogy ha p prím, és p osztója a bc szorzatnak, akkor vagy p osztója b-nek, vagy p osztója c-nek.

Szemléletesen: a és b egész szám pontosan akkor relatív prímek, ha a Descartes-féle koordinátarendszerben az (a, b) koordinátájú pont „látszik” az origóból, azaz nincsen egész koordinátájú pont az origó és az (a, b) pont között. (Lásd az 1. ábrát.)

Annak a valószínűsége, hogy két véletlenül választott egész szám relatív prím, 6/π2 (lásd Pi), ami körülbelül 60%. (lásd lentebb)

A természetes számok köréből vett a és b pontosan akkor relatív prímek, ha 2a − 1 és 2b − 1 is relatív prímek.

[szerkesztés] Relatív prím számok szorzatának osztói a tényezők osztói szorzatai

  1. Legyenek a osztói a1, a2, ..., aj; ezek halmaza legyen A és összegük legyen s(A); míg b osztói legyenek b1, b2, ..., bk, s ezek halmaza legyen B és összegük s(B) (j,k egynél nagyobb természetes számok)!
    1. Ekkor egy A-beli x és egy B-beli y szám szorzata biztosan osztója ab-nek, hiszen az oszthatóság definíciója szerint léteznek olyan q,r egész számok, a=xq és b=yr, és így ab=(xq)(yr)=(xy)qr, ami azt jelenti, (xy) tényleg osztója ab-nek.
    2. Fordítva, ab egy osztójának prímfelbontását képezve, ezek a relatív prímség miatt két közös elem nélküli csoportra oszlanak: a prímosztói, illetve b prímosztói; a két diszjunkt csoport elemeinek szorzatát külön-külön képezve pedig részint a, részint pedig b egy osztóját kapjuk.
  2. A 2.1. és 2.2. gondolatmenetek eredményét összefoglalva adódik, hogy éppen a és b osztóinak szorzatai adják ab osztóit, vagyis ezek halmaza C = {xy | x∈A, y∈B}. Tehát A és B elemeit összeszorozva kapjuk az ab osztóit,

E tételre épül a d(n) ("osztókszáma") és a σ(n) ("osztókösszege") függvény (gyenge) multiplikativitásának bizonyítása.

[szerkesztés] Valószínűség

Feltehető a kérdés, hogy mi annak a valószínűsége, hogy véletlenszerűen kiválasztva két egész számot, ezek egymáshoz relatív prímek. Két szám, akkor és csak akkor relatív prím egymáshoz, ha nincs közös prímosztójuk, ez a számelmélet alaptétele szerint könnyen igazolható. Ezt az átfogalmazást használjuk fel a kérdés megválaszolására.

Jelölje Q(N) azon (a,b) párok számát, ahol a és b is 1 és N közé eső természetes szám és a, b relatív prímek. Be fogjuk látni, hogy

\frac{Q(N)}{N^2}\to \frac{6}{\pi^2}.

Jelölje p_1<p_2<\cdots a prímszámok sorozatát. Jelölje Qr(N) azon (a,b) párok számát, amikre 1\leq a,b\leq N és p_1,\dots,p_r egyike sem közös osztója a-nak és b-nek. Nyilván Q(N)\leq Q_r(N).

Meghatározzuk \lim Q_r(N)/N^2-et. Ha N p_1\cdots p_r-rel osztható szám, mondjuk N=p_1\cdots p_r M, akkor

Q_r(N)=\left(1-\frac{1}{p^2_1}\right)\cdots \left(1-\frac{1}{p^2_r}\right)N^2

mivel annak valószínűsége, hogy a és b mindkettő osztható pi-vel 1/p^2_i és ezek az események függetlenek (a szita-formulára is hivatkozhatunk).

Legyen most N tetszőleges: N=p_1\cdots p_rM+K, ahol 0\leq K<p_1\cdots p_r a maradékos osztás tétele szerint.

Ekkor

Q_r(N)<Q_r(p_1\cdots p_r M)+2p_1\cdots p_r N

(hozzászámolva az összes párt, aminek valamelyik tagja p_1\cdots p_r M és N között van). Ezért

\frac{Q_r(N^2)}{N^2}<\left(1-\frac{1}{p^2_1}\right)\cdots\left(1-\frac{1}{p^2_r}\right)+\frac{2p_1\cdots p_r}{N},

továbá nyilván

\frac{Q_r(N)}{N^2}\geq \frac{Q_r(p_1\cdots p_rM)}{N^2}=\left(1-\frac{1}{p^2_1}\right)\cdots \left(1-\frac{1}{p^2_r}\right) \frac{(p_1\cdots p_rM)^2}{N^2}

és innen

\frac{Q_r(N)}{N^2}\to \left(1-\frac{1}{p^2_1}\right)\cdots \left(1-\frac{1}{p^2_r}\right).

Most visszatérünk az eredeti Q(N)-hez. Q(N)\leq Q_r(N) és Qr(N) − Q(N) legfeljebb annyi, ahány olyan (a,b) pár van, aminek mindkét tagja osztható egy pr-nél nagyobb prímszámmal, innen

Q_r(N)-Q(N)\leq \left[\frac{N^2}{p^2_{r+1}}\right]+ \left[\frac{N^2}{p^2_{r+2}}\right]\cdots<N^2\left(\frac{1}{p^2_{r+1}}+\cdots\right),

ahol [x] az x valós szám egész részét jelöli. Ez viszont kisebb, mint

\frac{N^2}{p_r}

hiszen mindig teljesül

\frac{1}{(n+1)^2}+\frac{1}{(n+2)^2}+\cdots <\frac{1}{n}.

Így az adódott, hogy

\frac{Q_r(N)}{N^2}-\frac{1}{p_r}<\frac{Q(N)}{N^2}<\frac{Q_r(N)}{N^2}

és limeszt véve

\lim\frac{Q(N)}{N^2}= \prod \left(1-\frac{1}{p^2}\right)

ahol a jobboldali szorzatban prím p-ket kell venni. Ez viszont a zéta-függvényre vonatkozó ismereteink alapján 1 / ζ(2) = 6 / π2.

Az általános eset igazolása ugyanúgy megy: annak valószínűsége, hogy egy véletlenszerűen kiválasztott szám-k-as tagjainak nincs közös osztója, 1 / ζ(k).


[szerkesztés] Lásd még

[szerkesztés] Források

  • az angol Wikipedia szócikke
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu