Maggiorante e minorante
Da Wikipedia, l'enciclopedia libera.
In matematica, un maggiorante di un insieme è qualsiasi elemento che è maggiore o uguale di tutti gli elementi dell'insieme. Per poter parlare di maggiore o uguale abbiamo bisogno di una relazione d'ordine, quindi l'insieme deve essere totalmente ordinato. È sempre meglio supporre che gli insiemi di cui si tratta appartengano ad insiemi più grandi.
Sia un insieme ordinato e
; si dice che un elemento
è un maggiorante di E se per ogni
si ha
.
Analogamente, in modo duale, si definisce un minorante di un insieme E come un elemento tale che per ogni
si ha
.
Se E ammette almento un maggiorante (minorante) allora si dice che E è un insieme limitato superiormente (inferiormente). Un insieme che possiede sia maggioranti che minoranti si dice limitato.
[modifica] Esempi
, allora i suoi maggioranti sono
, notare che anche 3 è maggiorante. Il suo unico minorante è lo 0.
, i suoi maggioranti sono
e i suoi minoranti
.
non ha maggioranti nè minoranti.
- Nell'insieme degli interi positivi parzialmente ordinato dalla relazione di divisibilità l'insieme {2,3,4,5,6} ammette come maggioranti 60 e 120; 60 è il minimo dei suoi maggioranti.
- Nell'insieme degli interi positivi parzialmente ordinato dalla relazione di divisibilità l'insieme {20,30,40} ammette come minoranti 2, 5 e 10; 10 è il massimo dei suoi minoranti.