Numerus triangularis
E Vicipaedia
1 | |
3 | |
6 | |
10 | |
15 |
Numerus triangularis est numerus naturalis qui representetur a triangulo facto cum eodem numero punctorum. Omnes potest scribier quasi summa 1 + 2 + 3 + ... + n, cum n est numerus quiquam naturalis. Ergo, ordo numerorum triangularium pro ullo n = 1, 2, 3... est
Cum omnis series est longior uno quam priore, perfacile visu num numerum naturalem esse summam priorum n numerorum naturalium consequentum.
Ut invenias num numerum triangularem, hac formula utere:
Aut quasi summa:
[recensere] Proprietates
Una proprietas iucunda est: 2 numeri triangulares consecuquentes, cum sibi additi, numerus quadratus aequant. Ita, 1 + 3 = 4, 3 + 6 = 9, 6 + 10 = 16, 10 + 15 = 25, etc. Hoc monstretur mathematico modo:
Vel graphico:
16 | |
25 |
Quadrati facti duobus numeris triangularibus consequentibus aduinctis.
[recensere] Vide etiam
- Numerus tetrahedronalis - 3-D versio numeri triangularis.
- Numerus quadratus
- 666 - Numerus triangularis notissimus.
[recensere] Nexus externi
- Numeri triangulares Pellicula PodCast a http://www.isallaboutmath.com
- Numeri triangulares apud cut-the-knot
- Sunt numeri triangulares qui etiam sunt quadrati apud cut-the-knot
- Mathemundus