Polietylen
Z Wikipedii
Polietylen lub polieten - polimer etenu. Symbol przemysłowy: (PE).
Polietylen jest giętki, woskowaty, przezroczysty, termoplastyczny. Traci elastyczność pod wpływem światła słonecznego i wilgoci. Synteza polietylenu jest przykładem polimeryzacji rodnikowej.
Folie z PE charakterują się małą przenikalnością dla pary wodnej, łatwo przepuszczają pary substancji organicznych, nie są odporne na węglowodory i jego chloropochodne. Są odporne na działanie roztworów kwasów, zasad i soli oraz niską temperaturę. Stosowany do wyrobu: folii,rur,pojemników,nart,żagli. W wędkarstwie, żeglarstwie oraz wspinaczce często stosowane są żyłki lub liny plecione z polietylenu o nazwie handlowej Spectra.
[edytuj] Systematyka
Właściwości zależą od warunków przeprowadzenia reakcji (ciśnienia, temperatury, katalizatora). Wyróżnia się 4 rodzaje polietylenu:
- HDPE (high density PE, PEHD) - niskociśnieniowy PE o dużej gęstości (nierozgałęzione łańcuchy zapewniają wysoką gęstość i duże siły oddziaływania międzycząsteczkowego). Gęstość-0,94-0,97 g/cm3.
- MDPE (medium density PE) - o średniej gęstości. Gęstość - 0,926-0,940 g/cm3.
- LDPE (low density PE) - wysokociśnieniowy PE o niskiej gęstości (rozgałęzione łańcuchy poletylenu "nie pasują" do siebie, co powoduje mniejszą gęstość). Gęstość - 0,915-0,935 g/cm3.
- LLDPE (linear low density PE) -wysokociśnieniowy liniowy PE o niskiej gęstości (krótkie, nierozgałęzione łańcuchy powstają w wyniku kopolimeryzacji etenu z alkenami o dłuższych łańcuchach). Gęstość - 0,915-0,935 g/cm3.
[edytuj] Historia
Polietylen po raz pierwszy zsyntetyzował niemiecki chemik Hans von Pechman, który wytworzył go w 1898 podczas ogrzewania diazometanu. Gdy jego współpracownicy Eugen Bamberger i Friedrich Tschimer zbadali białą, woskowatą substancję którą wyprodukował, odkryli że składa się ona z wielu grup -CH2- i nazwali ją polimetylen.
Pierwsza możliwa do przeprowadzenia na dużą skalę synteza polietylenu została odkryta przez Erica Fawcetta i Reginalda Gibsona w ICI Chemicals w 1933. Podczas działania skrajnie wysokim (kilkaset atmosfer) ciśnieniem na mieszaninę etenu i benzaldehydu otrzymali białą, woskowatą substancję. Ponieważ reakcja była inicjowana przez ślady tlenu w aparaturze, była trudna do powtórzenia. Udało się to w 1935, kiedy kolejny chemik z ICI, Michaela Perrin odkrył ten przypadkowy wpływ. Wysokociśnieniowa metoda syntezy polietylenu stała się podstawą przemysłowej produkcji LDPE rozpoczętej w 1939.
Kamieniemiami milowymi w późniejszej syntezie polietylenu stały się katalizatory, które pozwalają na polimeryzację etenu w łagodniejszych przedziałach temperatury i ciśnienia. Pierwszym z nich był Tlenek chromu (VI), którego właściwości odkryli w 1951 Robert Banks i John Hogan w Phillips Petroleum. Katalizator ten umożliwiał syntezę w temperaturze 150°C przy ciśnieniu 30 atm.
W 1953 niemiecki chemik Karl Ziegler rozwinął proces oparty na chlorkach tytanu, zwłaczsza chlorku tytanu(IV) TiCl4 i metaloorganicznych związkach glinu, takich jak trietyloglin - Al(C2H5)3. Pozwalał on na syntezę w jeszcze łagodniejszych(60°C, 1 atm) warunkach niż proces Phillipsa. Proces Phillipsa jest jednak tańszy i łatwiejszy do opanowania, dlatego obie metody pozostają praktyce przemysłowej do dziś.
Przed końcem lat pięćdziesiątych XX wieku obu syntez - Phillipsa i Zieglera używano do produkcji HDPE. Początkowo Phillips miał problemy z produkowaniem HDPE stałej jakości i magazyny wypełniały się wybrakowanym polietylenem. Katastrofa finansowa została powstrzymana w 1957, gdy hula hoop, zabawka składająca się z kolistej, polietylenowej rurki stała się modna wśród nastolatków w całych Stanach Zjednoczonych.
Trzeci typ procesu katalitycznego, oparty na metalocenach (związkach sandwiczowych lub kanapkowch, jak ferrocen) został odkryty w 1976 w Niemczech przez Waltera Kaminsy'ego i Hansjörga Sinna. Dowiedziono, że procesy Zieglera i metalocenowy są bardzo elastyczne przy kopolimeryzacji etylenu z innymi alkenami. Stały się one bazą dla żywic etylenowych różnego rodzaju, w tym VLDPE, LLDPE i MDPE.
Do niedawna metaloceny były najbardziej aktywnymi katalizatorami polimeryzacji etylenu. Dużo wysiłku wkłada się w tzw. katalizatory post-metalocenowe, które mogą pozwolić na większą ingerencję w strukturę polietylenu niż metaloceny. Ostatnio prace korporacji Fujita i Mitsui pokazały, że iminofenolowe kompleksy metali grupy 4 wykazują wyższą aktywność niż metaloceny.