Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions História da astronomia - Wikipédia

História da astronomia

Origem: Wikipédia, a enciclopédia livre.

Tabela de Astronomia, da Cyclopaedia de 1728
Tabela de Astronomia, da Cyclopaedia de 1728
História da ciência
Navegação
Portal
Categorias
Cronologias
Teorias
Historiografia
Filosofia
Períodos
Civilizações antigas
Grécia e Roma
Mundo islâmico
Europa medieval
Renascimento
Revolução científica
Iluminismo
Industrial
Contemporânea
Disciplinas
Astronomia
Biologia
Computação
Física
Geografia
Geologia
Matemática
Medicina
Química
Tecnologia
Locais
Portugal
Brasil

A Astronomia é provavelmente a ciência natural mais antiga, datando a épocas da antiguidade, com suas origens em praticas religiosas pré-históricas: vestígios dessas práticas que ainda são encontrados na astrologia, uma disciplina que por muito tempo foi entrelaçada com a astronomia e, no mundo ocidental, não muito diferente da mesma até aproximadamente 1750-1800. A astronomia antiga envolvia-se em observar os padrões regulares dos movimentos de objetos celestiais visíveis, especialmente o Sol, a Lua, estrelas, e os planetas vistos à olho nu. Um exemplo da astronomia antiga poderia envolver o estudo da mudança da posição do Sol ao longo do horizonte ou as mudanças nos aparecimentos de estrelas no curso de um ano, o que poderia ser usado para estabelecer um calendário ritualístico ou agrícola. Em algumas culturas os dados obtidos eram usados em prognósticos astrológicos.

Astrônomos da antiguidade eram capazes de diferenciar entre uma estrela e uma planeta, já que as estrelas permaneciam relativamente fixas durante os séculos enquanto planetas moviam-se consideravelmente em um tempo comparativamente menor.

Índice

[editar] História Antiga

Culturas antigas identificavam objetos celestes com deuses e espíritos. Eles relacionavam esses objetos (e seus movimentos) a fenômenos como a chuva, estações, secas, e marés. Normalmente acredita-se que os primeiros astrônomos profissionais foram sacerdotes (como os Magi), e seu conhecimento do “céu” era visto como “divino”, daí se origina a antiga conexão com o que é conhecido atualmente como astrologia. Antigas estruturas que apresentavam alinhamentos astronômicos (como o Stonehenge) provavelmente preenchiam tanto funções astronômicas quanto religiosas.

Calendários ao redor mundo normalmente são fixados em relação ao Sol ou a Lua (medindo-se o dia, o mês e o ano), e tinham grande importância para sociedades agrícolas, onde a colheita dependia do plantio em uma época correta do ano. O calendário moderno mais comum é baseado no calendário Romano, que é dividido em 12 meses que alternam em meses de trinta e trinta e um dias. Em 46 a.C Julio César intigou uma reforma no calendário e criou uma forma de ano bissexto.

A Bíblia contém um número de afirmações sobre a posição da Terra no Universo e a natureza das estrelas e planetas; veja Cosmologia Bíblica.

[editar] Mesopotâmia

As origens da astronomia Ocidental podem ser encontradas na Mesopotâmia, a “terra entre dois rios”, Tigre e Eufrates, eram os reinos antigos dos Sumérios, Assírios, e Babilônios eram localizados. Uma forma de escrita conhecida como cuneiforme surgiu entre os sumérios aproximadamente em 3500-3000 a.C. Os sumérios somente praticavam uma forma básica de astronomia, mas tiveram uma importante influência na sofisticação da astronomia dos babilônios. A Teologia Astral, que deu aos deuses planetários um papel importante na Mitologia e religião mesopotâmica, começou com os sumérios. Eles também usavam um sistema numérico sexagenal (base 60), que simplificava a tarefa do registro de números muito grandes ou muito pequenos. A prática moderna de dividir um círculo em 360 graus, de 60 minutos cada, começou com os sumérios. Para maiores informações, veja os artigos em numerais babilônios e matemática.

Fontes clássicas normalmente usam o termo Caldeus para os astrônomos da Mesopotâmia, que foram, na verdade, sacerdotes escribas especializados em astrologia e outras formas de divinação. As atividades mais antigas de astrônomos babilônios foram as observações de fenômenos astronômicos significativos que eram considerados presságios. O melhor exemplo conhecido é o tablete Vênus de Ammisaduqa, um registro da primeira e última visibilidade observada do planeta Vênus no século XVI a.C. Os textos do tablete de Vênus foi posteriormente incluído em um extenso compêndio de presságios chamado de Enuma Anu Enlil.

Um aumento significante tanto na freqüência quanto na qualidade das observações babilônias surgiu durante o reinado de Nabonassar (747-733 a.C). O registro sistemático de fenômenos considerados como mau agouro em diários astronômicos que se iniciou nesse período, permitiu que fosse descoberto um ciclo repetitivo de eclipses lunares a cada 18 anos, por exemplo. O astrônomo grego Ptolomeu posteriormente usou os registros feitos na época de Nabonassar para consertar o inicio de uma era, já que ele sentiu que as observações usáveis mais antigas haviam sido feitas naquela época.

O último estágio no desenvolvimento da astronomia babilônia ocorreu durante o perigoso do Império Selêucida (323-60 a.C) No terceiro século, astrônomos começaram a usar “textos anuais” para predizer os movimentos dos planetas. Esses textos compilavam registros de observações passadas para encontrar ocorrências repetitivas de fenômenos considerados como mau agouro para cada planeta. Aproximadamente na mesma época, ou um pouco depois, astrônomos criaram modelos matemáticos que os permitiram predizerem os fenômenos diretamente, sem necessitar da consulta nos registros antigos.

As influências Mesopotâmicas na astronomia ocidental são extensas. Foi dos mesopotâmicos que os gregos ganharam seus conhecimento sobre os planetas visíveis e as constelações do zodíaco, os séculos de registros de observações astronômicas e até a idéia de que os movimentos dos planetas poderiam ser preditos com precisão.

[editar] Grécia Antiga

O principal fragmento  da Máquina de Antikythera, o primeiro computador analógico da história
O principal fragmento da Máquina de Antikythera, o primeiro computador analógico da história

Os gregos antigos desenvolveram a astronomia, a qual eles relacionavam como um ramo da matemática, a um nível bem sofisticado. O primeiro astrônomo a desenvolver um modelo geométrico de três - dimensões para explicar o movimento aparente dos planetas foi Eudoxo de Cnido no século IV a.C; seu modelo era baseado em esferas homocéntricas, e era geocêntrico. Seu contemporâneo mais jovem Heraclides do Ponto propôs que a Terra rodavam ao redor de seu eixo.

Aristóteles (384-322 a.C) desenvolveu uma idéia de Universo, com a Terra no seu centro e com todo o resto rodando ao seu redor em órbitas que eram círculos perfeitos, que tinha um poder explanatório considerável e prevaleceu por séculos. Ao desenvolver e popularizar esse modelo cosmológico, Aristóteles tenha talvez mais prejudicado o conhecimento do que o ajudado.

A Máquina de Antikythera, um dispositivo originário da Grécia antiga que calculava os movimentos dos planetas, data de aproximadamente 80-87 a.C e foi o primeiro ancestral dos computadores astronômicos. Foi encontrado nos destroços de um antigo naufrágio na ilha grega de Antikythera, entre Kythera e Creta. O dispositivo ficou famoso por usar uma engrenagem diferencial, que anteriormente se acreditava ter sido inventada no século XVI, e pela miniaturização e complexidade de suas partes, que foram comparadas a um relógio feito no século XVII. O mecanismo original está exposto na Coleção do Bronze do Museu Nacional Arqueologico de Athenas, acompanhado por uma replica. Outra replica está em exposição no Museu do Computador Americano em Bozeman, Montana.

O estudo da astronomia pelos gregos antigos não eram limitado somente à Grécia, mas foi posteriormente desenvolvido nos séculos II e III a.C, nos estados helenísticos e em particular na Alexandria. No terceiro século antes de cristo, Aristarco de Samos foi o primeiro a propor um sistema inteiramente heliocêntrico, enquanto Eratóstenes , usando ângulos de sombras criadas em regiões totalmente distintas, estimou a circunferência da Terra com uma grande precisão.

No século seguinte, Hiparco fez inúmeras contribuições importantes, incluindo a primeira medição da precessão e a compilação do primeiro catalogo de estrelas. Ele propôs uma física alternativa a de Aristóteles, em um tratado que infelizmente foi perdido. Hiparco, que foi o primeiro astrônomo grego a insistir na precisão das medições, foi a fonte principal de Ptolomeu que escreveu a obra de arte da astronomia geocêntrica, o Magale Syntaxis (Grande Síntese), mais conhecido pelo seu titulo árabe Almagesto, que teve um efeito duradouro na astronomia até a Renascença. Hiparco também propôs nosso sistema moderno de magnitude aparente.

[editar] China

A astronomia na China tem uma longa história. Casas em Banpo de 4000 a.C eram orientadas a uma posição coincidente com a culminação da constelação Yingshi (Parte do que chamamos de Pegasus), logo após o solstício de inverno. Isso era feito com o propósito de fornecer uma boa quantidade de luz solar para a casa. Mosaicos de duas das quatro mega-constelações (Dragão, Fênix, Tigre, Tartaruga) flanqueavam um sepultamento Longshan em Puyang praticamente na mesma época. O observatório astronômico de Taosi (2300-1900 a.C) usava as colinas ao leste como marcador.

Oraculos de ossos da Dinastia Yin (segundo milenos a.C) registraram eclipses e supernovas. Registros detalhados de observações astronômicas eram feitos desde o século 6 a.C, até a introdução da astronomia ocidental e do telescópio no século XVII. Astrônomos chineses eram capazes de predizer com precisão eclipses e cometas.

Muito da astronomia chinesa servia aos propósitos de medir o tempo. Os chineses usavam um calendário lunar-solar, mas devido à diferença entre os ciclos do Sol e da Lua, astrônomos frequentemente preparavam novos calendários e faziam observações para esse propósito.

A divinação astrológica também era uma parte importante da astronomia chinesa. Astrônomos faziam anotações cuidadosas sobre as “estrelas novatas” que apareciam repentinamente entre as estrelas fixas. Eles foram os primeiros a registrar uma supernova, nos Anais Astrológicos do Houhanshu em 185 d.C. Por exemplo, a supernova que criou a Nebulosa do Caranguejo em 1054 é um exemplo de uma “estrela novata” observada por astrônomos chineses, embora tal fenômeno não tenha sido registrado pelos europeus contemporâneos. Registros astronômicos antigos de fenômenos como supernovas e cometas são algumas vezes usados em estudos astronômicos modernos.

[editar] Leste da Àsia

O primeiro observatório astronômico do leste da Ásia foi desenvolvido em Silla, um dos Três Reinos da Coréia, sobre o reinado da Rainha Seondeok de Silla. Foi batizada de Cheomsongdae, e é uma das mais antigas instalações científicas que ainda existe da Terra.

[editar] Astronomia Islâmica e da Idade Média

Os gregos realizaram contribuições importante no campo da Astronomia, mas o progresso tornou-se estagnado na europa medieval. A Europa Ocidental entrou na Idade Média com grandes dificuldades que prejudicaram a produção intelectual do continente. Muitos dos tratados da Antiguidade Clássica(em grego) não estavam disponíveis, restando somente sumários e compilações simplistas. Em contraste, os textos gregos prosperaram no mundo Árabe e nas mãos de padres em paróquias remotas que necessitavam de conhecimentos básicos em astronomia para calcular a data exata da Páscoa, um procedimento chamado de Cálculo da Páscoa. O mundo Árabe, sobre a influencia do Islã, havia se tornado mais culto, e muitos trabalhos importante da Grécia antiga foram traduzidos para o Árabe, usados e guardados em bibliotecas. O astrônomo persa do final do século 9 al-Farghani (Abu'l-Abbas Ahmad ibn Muhammad ibn Kathir al-Farghani), escreveu extensivamente sobre o movimento de corpos celestes. Seu trabalho foi traduzido para o Latim no século XII.

No final do século X, um grande observatório foi construído perto de Teerã, no Irã, pelo astrônomo al-Khujandi que observou uma série de transitos meridianos do Sol, que o permitiu calcular a obliquidade do elíptico, também conhecido como a Inclinação axial da Terra em relação ao Sol. Na Persia, Omar Khayyam compilou muitas tabelas e realizou uma reforma no calendário que era um pouco mais preciso que o Juliano e bem próximo ao Gregoriano. Uma grande façanha foi seu cálculo do ano que foi de 365,24219858156 dias, que é preciso até a sexta casa decimal.

No ano de 1100, a Europa começava a experimentar um aumento de interesse pelo estudo da natureza como parte da Renascença do século XII. A astronomia, na época, foi considerada uma das sete artes liberais, fazendo-o um dos assuntos centrais de qualquer Studium Generale (conhecido como "Universidade"). O modelo dos gregos mais relembrado durando a Idade Média foi o modelo geocêntrico, no qual a Terra esférica estava no centro do cosmos ou universo, com o Sol, a Lua e os outros planetas cada um ocupando sua própria esfera concêntrica. As estrelas fixas compartilhavam a esfera mais distante.

No século XIV, Nicole d'Oresme, posteriormente bispo de Lisieux, mostrou que nem as escrituras sagradas ou os argumentos contra o movimento da Terra eram demonstráveis e apresentou o argumento de simplicidade para a teoria de que a Terra é que move, e não o céu. Entretanto ele concluiu: "todos mantém, e eu penso, que o céu que se move e não a Terra: Já que Deus estabeleceu um mundo que não pode ser movido.[1]" No século 15 o cardeal Nicolau de Cusa sugeriu em alguns de seus escritos científicos, que a Terra girava em torno do Sol, e que cada estrela era na verdade um sol distante. Entretanto, ele não estava descrevendo uma teoria científica verificável sobre o Universo.

[editar] Civilizações Mesoamericanas

Os códices astronômicos Maias incluíam tabelas detalhadas para calcular as fases da Lua, a repetição de eclipses e o aparecimento e desaparecimento de Vênus como a estrela da manhã ou como da tarde. Acredita-se que os Maias orientavam um grande número de estruturas em relação ao extremo nascer e pôr de Vênus. Para os antigos maias, Vênus era o patrono da guerra, e acredita-se que muitas das batalhas que foram registradas tenham sido sincronizadas com os movimentos desse planeta. Marte também é citado e preservado em códices astronômicos antigos e na antiga mitologia maia[2].

Embora o calendário Maia não seja atrelado ao Sol, John Teeple propôs que os Maias calcularam o ano solar de com mais precisão que o calendário Gregoriano[3]. Tanto a astronomia quanto intrincados esquemas numerológicos para medir o tempo eram componentes de vital importância para a Religião Maia.

[editar] A Revolução de Copérnico

Galileu construiu seu próprio telescópio e descobriu que nossa Lua tinha crateras, que Júpiter tinha luas, que o Sol tinha  manchas, e que Vênus tinha fases como a Lua. Galileu argumentava que essas observações apoiavam o  sistema de Copérnico, onde os planetas orbitavam ao redor do Sol, e não da Terra, com se defendia na época.
Galileu construiu seu próprio telescópio e descobriu que nossa Lua tinha crateras, que Júpiter tinha luas, que o Sol tinha manchas, e que Vênus tinha fases como a Lua. Galileu argumentava que essas observações apoiavam o sistema de Copérnico, onde os planetas orbitavam ao redor do Sol, e não da Terra, com se defendia na época.

A renascença chegou na astronomia através dos estudos de Nicolau Copérnico, que propôs um modelo heliocêntrico do Universo. Seu trabalho foi defendido, ampliado e corrigido, pelas idéias de Galileu Galilei e Johannes Kepler.

Kepler, usando observações a olho nú feitas pelo astrônomo Tycho Brahe, descobriu as leis do movimento planetário que carregam seu nome (embora ele as tenha publicado misturadas com outras idéias, e não dava a importância que damos a elas hoje).

Galileu foi um dos primeiros a observar o céu noturno com um telescópio, e após construir um telescópio refrator 20x, descobriu as quatro maiores luas de Júpiter em 1610. Essa foi a primeira observação conhecida de satélites orbitando outro planeta. Ele também observou que nossa Lua apresentava crateras, e observou (e explicou corretamente) as manchas solares. Isso somado ao fato de Galileu ter notado que Vênus exibia um completo conjunto de fases, similar as fases da Lua, foi visto como incompatível com o modelo geocêntrico defendido pela igreja, o que levou a muita controvérsia.

[editar] Unificando a Física com a Astronomia

Embora os movimentos dos corpos celestes tenham sido qualitativamente explicados em termos físico desde a introdução de Aristóteles dos motores celestiais em sua Metafísica e um quinto elemento em seu "Sobre os Céus", Kepler foi o primeiro a tentar derivar movimentos celestiais de causas físicas assumidas.[4] Isaac Newton apertou ainda mais os laços entre a física e a astronomia através de sua Lei da Gravitação Universal. Percebendo que a mesma força que atraia os objetos para o centro da Terra, mantia a Lua em órbita ao redor da Terra, Newton conseguiu explicar - em um único quadro teórico - todos os fenômenos gravitacionais. Em seu Philosophiae Naturalis Principia Mathematica, ele derivou as Leis de Kepler dos primeiros princípios. Os desenvolvimentos teóricos de Newton criaram muitos dos alicerces da física moderna.

[editar] Novas visões do Cosmo surgem

No final do século XIX, cientistas começaram a descobrir formas de luz que eram invisíveis ao olho nú: raios-X, raios gama, ondas de rádio, microondas, radiação ultravioleta e radiação infravermelha. Essas descobertas tiveram um grande impacto na astronomia, criando os campos da astronomia infravermelha, rádio astronomia, astronomia do raio-X e finalmente astronomia dos raios gama. Com o advento da espectroscopia foi evidenciado que outras estrelas eram similares ao Sol, mas com temparaturas , massas e tamanhos diferentes. A existência de nossa galáxia, a Via Láctea, como um grupo separado de estrelas só foi evidenciado no século XX, junto com a descoberta de galáxias "externas", e logo após, a expansão do Universo visto pela recessão da maioria das galáxias em relação a nossa.

O século XX foi um século excitante para a astronomia onde cada avanço instrumental levava a uma nova descoberta reformuladora para o entendimento do Universo.

[editar] Astronomia Moderna

No final do século XIX foi descoberto que, quando a Luz do Sol era decomposta, uma miríade de linhas espectrais era observada (regiões onde havia pouca ou nenhum luz). Experimentos com gases aquecidos mostraram que as mesmas linhas podiam ser observadas no espectro de gases, linhas especificas correspondendo a elementos específicos. Foi evidenciado que, elementos químicos encontrados no Sol (majoritariamente hidrogênio e hélio) também eram encontrados na Terra. Durante o século XX, a espectroscopia (e estudo dessas linhas) avançou, especialmente devido ao advento da física quântica, que era necessária para compreender as observações.

Mesmo que nos séculos anteriores os astrônomos notáveis eram exclusivamente homens, na virada do século XX as mulheres passaram a desempenhar um papel importante nas grandes descobertas astronômicas. Nesse período anterior aos computadores mordernos, mulheres no United States Naval Observatory (Observatório Naval dos Estados Unidos), na Universidade de Harvard, e em outras instituições de pesquisa astronômicas frequentemente serviam de "computadores humanos", que realizam a tarefa tediosa de calcular enquanto os cientistas realizavam as pesquisas que necessitavam de conhecimentos mais profundos no assunto[1]. Muitas das descobertas desse período eram notadas inicialmente por mulheres que "computavam" e então reportadas a seus supervisores. Por exemplo, Henrietta Swan Leavitt descobriu a relação entre o período de luminosidade e a variabilidade de uma estrela Cefeida, Annie Jump Cannon organizou os tipos espectrais estelares de acordo com a temperatura estelar, e Maria Mitchell foi a primeira pessoa a descobrir um cometa usando um telescópio (para saber mais sobre mulheres astronômas [2]). Algumas dessas mulheres receberam pouco ou nenhum reconhecimento durante suas vidas, devido a baixa reputação profissional no campo da astronomia. E embora suas descobertas sejam ensinadas em salas de aula de astronomia ao redor do mundo, poucos estudantes de astronomia conseguem atribuir o trabalho a suas respectivas autoras.

[editar] Cosmologia e a expansão do Universo

Muito do conhecimento atual em astronomia, foi descoberto durante o século XX. Com a ajuda do uso da fotografia, objetos menos brilhantes foram finalmente observados. Nosso Sol fazia parte de uma galáxia formada por bilhões de estrelas. A existência de outras galáxias, um dos tópicos do "O Grande Debate", foi resolvido por Edwin Hubble, que identificou a nebulosa de Andrômeda como uma galáxia diferente, e muitas outras a grandes distâncias, afastando-se de nossa galáxia.

Cosmologia Física, uma disciplina de grande intercessão com a astronomia, realizou grandes avanços no século XX, com o modelo do Big Bang quente fortemente apoiado pelas evidências fornecidas pela astronomia e física, como o redshift de galáxias bem distantes e fontes de rádio, a Radiação cósmica de fundo, lei de Hubble, e a abundância cosmológica de elementos.

[editar] Notas

  1. Nicole d'Oresme, Le Livre du ciel et du monde, xxv, ed. A. D. Menut e A. J. Denomy, trans. A. D. Menut, (Madison: Univ. de Wisconsin Pr., 1968), citação na pp. 536-7.
  2. A. F. Aveni, Skywatchers of Ancient Mexico, (Austin: Univ. do Texas Pr., 1980), pp. 173-99.
  3. A. F. Aveni, Skywatchers of Ancient Mexico, (Austin: Univ. do Texas Pr., 1980), pp. 170-3.
  4. Bruce Stephenson, Kepler's physical astronomy, (New York: Springer, 1987), pp. 67-75.

[editar] Referências

  • Aaboe, Asger. Episodes from the Early History of Astronomy. Springer-Verlag 2001 ISBN 0-387-95136-9
  • Aveni, Anthony F. Skywatchers of Ancient Mexico. University of Texas Press 1980 ISBN 0-292-77557-1
  • Dreyer, J. L. E. History of Astronomy from Thales to Kepler, 2nd edition. Dover Publications 1953 (revised reprint of History of the Planetary Systems from Thales to Kepler, 1906)
  • Evans, James. The History and Practice of Ancient Astronomy. Oxford University Press 1998 ISBN 0-19-509539-1
  • Hodson, F. R. (ed.). The Place of Astronomy in the Ancient World: A Joint Symposium of the Royal Society and the British Academy. Oxford University Press, 1974 ISBN 0-19-725944-8
  • Hoskin, Michael. The History of Astronomy: A Very Short Introduction. Oxford University Press. ISBN 0-19-280306-9
  • Neugebauer, Otto. The Exact Sciences in Antiquity, 2nd edition. Dover Publications 1969
  • Pannekoek, Anton. A History of Astronomy. Dover Publications 1989
  • Pedersen, Olaf. Early Physics and Astronomy: A Historical Introduction, revised edition. Cambridge University Press 1993 ISBN 0-521-40899-7
  • Rochberg, Francesca. The Heavenly Writing: Divination, Horoscopy, and Astronomy in Mesopotamian Culture. Cambridge: Cambridge University Press 2004 ISBN 0-521-83010-9
  • Stephenson, Bruce. Kepler's Physical Astronomy, Studies in the History of Mathematics and Physical Sciences, 13. New York: Springer, 1987 ISBN 0-387-96541-6
  • Walker, Christopher (ed.). Astronomy before the telescope. British Museum Press 1996 ISBN 0-7141-1746-3

[editar] Períodicos




Portal A Wikipédia possui o
Portal de Astronomia
{{{Portal2}}}
{{{Portal3}}}
{{{Portal4}}}
{{{Portal5}}}


Portal de história da ciência. Os artigos sobre história da ciência, tecnologia e medicina.

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu