Механика
Материал из Википедии — свободной энциклопедии
Меха́ника (греч. μηχανική — искусство построения машин) — техническая наука, выделившаяся из прикладной физики; наука о движении и силах, вызывающих движение. Предельными случаями механики являются небесная механика (механика движения небесных тел и гравитации) и квантовая механика (механика элементарных частиц и электромагнитного взаимодействия).
Содержание |
[править] Механическая система
Объекты, изучаемые механикой, называются механическими системами. Механическая система обладает определённым числом k степеней свободы и описывается с помощью обобщённых координат q1, … qk. Задача механики состоит в изучении свойств механических систем, и, в частности, в выяснении их эволюции во времени.
Наиболее важными механическими системами, в порядке увеличения сложности, являются:
- материальная точка
- математический маятник
- крутильный маятник
- абсолютно твердое тело
- деформируемое тело
- абсолютно упругое тело
- сплошная среда
[править] Разделы механики
Стандартные («школьные») разделы механики: кинематика, статика, динамика. Кроме них, механика включает следующие (во многом перекрывающиеся) разделы:
- теоретическая механика
- небесная механика
- квантовая механика
- классическая механика
- сопротивление материалов
- строительная механика
- теория колебаний (аналитическая динамика)
- теория упругости
- теория пластичности
- теория устойчивости и катастроф
- стохастическая динамика.
- нелинейная динамика
- вычислительная механика
Некоторые курсы механики ограничиваются только твёрдыми телами. Изучением деформируемых тел занимаются теория упругости (сопротивление материалов — её первое приближение) и теория пластичности. В случае, когда речь идет не о жёстких телах, а о жидкостях и газах, необходимо прибегнуть к механике жидкостей и газов, основными разделами которой являются гидростатика и гидрогазодинамика. Общей теорией, изучающей движение и равновесия жидкостей, газов и деформируемых тел, является механика сплошной среды.
Основной математический аппарат классической механики: дифференциальное и интегральное исчисление, разработанное специально для этого Ньютоном и Лейбницем. В классической формулировке, механика строится на трёх законах Ньютона. Решение многих задач механики упрощается, если ограничиться только потенциальным взаимодействием тел, поскольку в этом случае интегрирование уравнений движения приводит к закону сохранения энергии.
[править] Лагранжева механика
Все три закона Ньютона можно вывести из экстремального принципа. В этой формулировке, механика строится как следствие одного-единственного утверждения: все тела движутся так, чтобы обеспечить минимальность действия. Такая формулировка называется лагранжевой механикой.
[править] Классическая механика
Классическая механика основана на законах Ньютона, преобразовании скоростей Галилея и существовании инерциальных систем отсчёта.
[править] Границы применимости классической механики
В настоящее время известно три типа ситуаций, в которых классическая механика перестаёт отражать реальность.
- Свойства микромира не могут быть поняты в рамках классической механики. В частности, в сочетании с термодинамикой она порождает ряд противоречий (см.Классическая механика). Адекватным языком для описания свойств атомов и субатомных частиц является квантовая механика. Подчеркнём, что переход от классической к квантовой механике — это не просто замена уравнений движения, а полная перестройка всей совокупности понятий (что такое физическая величина, наблюдаемое, процесс измерения и т. д.)
- При скоростях, близких к скорости света, классическая механика также перестаёт работать, и необходимо переходить к специальной теории относительности. Опять же, этот переход подразумевает полный пересмотр парадигмы, а не простое видоизменение уравнений движения. Если же, пренебрегая новым взглядом на реальность, попытаться всё же привести уравнение движения к виду F = ma, то придётся вводить тензор масс, компоненты которого растут с ростом скорости. Эта конструкция уже долгое время служит источником многочисленных заблуждений, поэтому пользоваться ей не рекомендуется.
- Классическая механика становится неэффективной при рассмотрении систем с очень большим числом частиц (или же большим числом степеней свободы). В этом случае практически целесообразно переходить к статистической физике.
[править] См. также
[править] Ссылки
Научные направления | О науке… |
Гуманитарные | Общественные | Естественные | Технические | Прикладные |
Математика | Физика | Химия | География | Астрономия | Геология | Биология | История | Языкознание | Филология | Философия | Психология | Социология | Антропология | Экономика | Информатика |