Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions 格 (数学) - Wikipedia

格 (数学)

维基百科,自由的百科全书

术语格(lattice)来源于描述这种次序的哈斯图的形状。
术语(lattice)来源于描述这种次序的哈斯图的形状。

数学中,是其非空有限子集都有一个上确界(叫)和一个下确界(叫)的偏序集合(poset)。格也可以特征化为满足特定公理恒等式代数结构。因为两个定义是等价的,格理论从序理论泛代数二者提取内容。半格包括了格,依次包括 Heyting代数布尔代数。这些"格样式"的结构都允许序理论和抽象代数的描述。

目录

[编辑] 定义

[编辑] 序理论定义

(L, \leq) 是一个偏序集,若对于任意的 x, y \in L{x,y} 都有最小上界最大下界,则称 (L, \leq) 构成一个

由于最小上界和最大下界的唯一性,可以把 {x,y} 的最小上界和最大下界看成是 x,y 的二元运算,分别用 \vee\wedge 表示,即 x \vee y 表示 xy 的最小上界,x \wedge y 表示 xy 的最大下界。

有界格有一个最大元素和一个最小元素,按惯例分别指示为 1 和 0(也叫做)。任何格都可以通过增加一个最大元素和最小元素而转换成有界格。

使用容易的归纳论证,你可以演绎出任何格的所有非空有限子集的上确界()和下确界()的存在。一个很重要的格的种类是完全格。一个格是完全的,如果它的所有子集都有一个交和一个并,这对比于上述格的定义,这里只要求所有非空有限子集的交和并的存在。

[编辑] 抽象代数定义

另一种定义格的方式是将格定义为一种代数结构。一个是一个代数结构 (L, \vee, \wedge),其中 \vee\wedge 是定义在集合 L 上的二元运算,且对于所有的 a, b, c \in L 满足:

交换律 a \vee b = b \vee a a \wedge  b = b \wedge a
结合律 a \vee (b \vee c) = (a \vee b) \vee c a \wedge (b \wedge c) = (a \wedge b) \wedge c
吸收律: a  \vee (a \wedge b) = a a  \wedge (a \vee b) = a

从上述三个公理恒等式可以得出重要的:

幂等律 a \vee a = a a \wedge a = a

[编辑] 两个定义的等价性

通过定义

对于 a, b \in Sa \leq b 当且仅当 a \vee b = b

易见通过偏序集和代数结构这两种方式定义格是完全等价的。

[编辑] 例子

n是正整数,Snn的正因子集合,D为整除关系,则偏序集(Sn,D)构成格。对于所有x, y \in S_nx \vee yxy的最小公倍数,x \wedge yxy的最大公约数。

[编辑] 对偶原理

f是含有格中的元素以及符号=, \leq, \geq, \vee, \wedge的逻辑命题,令f * 是将f中的\leq替换为\geq,将\geq替换为\leq,将\vee替换为\wedge,将\wedge替换为\vee后所得到的命题。则称f *f对偶命题

f是含有格中的元素以及符号=, \leq, \geq, \vee, \wedge的逻辑命题,若f对于一切格为真,则f的对偶命题f * 也对于一切格为真。

[编辑] 子格

(L, \vee, \wedge)是格,SL的非空子集,若(S, \vee, \wedge)仍然是一个格,则称SL子格

[编辑] 同态定理

(L_1, \vee_1, \wedge_1)(L_2, \vee_2, \wedge_2)是格,f是从L1L2的映射,

  1. f是同态映射,则f是保序映射,即\forall x, y \in L_1,有
    x \leq_1 y \implies f(x) \leq_2 f(y)
  2. f双射,则f是同构映射当且仅当\forall x, y \in L_1,有
    x \leq_1 y \implies f(x) \leq_2 f(y)


[编辑] 参见

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu