New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Röntgenstrahlen - Wikipedia

Röntgenstrahlen

aus Wikipedia, der freien Enzyklopädie

Röntgenstrahlen (ursprünglich „X-Strahlen“) sind elektromagnetische Wellen mit einer Photonenenergie, die höher ist als die von ultraviolettem Licht.

Inhaltsverzeichnis

[Bearbeiten] Einordnung im elektromagnetischen Spektrum

Die Energiebereiche der Gamma- und Röntgenstrahlen überschneiden sich in einem weiten Bereich. Beide Strahlungsarten sind elektromagnetische Strahlung und bei gleicher Energie deshalb äquivalent. Das Unterscheidungskriterium ist die Herkunft: Röntgenstrahlen entstehen im Gegensatz zu den Gammastrahlen nicht bei Prozessen im Atomkern sondern durch hochenergetische Elektronenprozesse. Entsprechend haben Gammastrahlen eines Isotops spezifische Frequenzen (diskrete Spektrallinien), während technisch mit Röhren erzeugte Röntgenstrahlung ein kontinuierlicheres Spektrum aufweist. Die Lage des Maximums hängt dabei von der Betriebsspannung der Röhre ab. Röntgenphotonen haben eine Energie von etwa 100 eV bis 250 keV. Das entspricht einer Frequenz von etwa 3·1016 Hz bis 6·1019 Hz und einer Wellenlänge von etwa 5 pm - 10 nm (es gibt keine einheitliche Definition der unteren Grenzwellenlänge), wobei weiche Röntgenstrahlen die kleinste Energie und niedrigste Frequenz und die größte Wellenlänge haben, harte Röntgenstrahlen dementsprechend die größte Energie, höchste Frequenz und die kleinste Wellenlänge.

[Bearbeiten] Erzeugung

Schematische Zeichnung einer Röntgenröhre (s.h. Legende)
Schematische Zeichnung einer Röntgenröhre (s.h. Legende)
Feynman-Graph der Bremsstrahlungserzeugung (Zeit von links nach rechts)
Feynman-Graph der Bremsstrahlungserzeugung (Zeit von links nach rechts)

Röntgenstrahlen entstehen durch starke Beschleunigung geladener Teilchen (meistens Elektronen) oder durch hochenergetische Übergänge in den Elektronenhüllen von Atomen oder Molekülen. Beide Effekte werden in der Röntgenröhre ausgenutzt, in der Elektronen zunächst von einer Glühwendel (Kathode) aus beschleunigt werden (dabei setzen sie keine Röntgenstrahlung frei, weil die Beschleunigung nicht groß genug ist) und anschließend auf die Anode treffen, in der sie stark abgebremst werden. Hierbei entsteht Röntgenstrahlung (Bremsstrahlung) und Wärme. Dabei werden Elektronen aus den Schalen der Metallatome herausgeschlagen. Die Löcher in den Schalen werden durch andere Elektronen aufgefüllt, wobei Röntgenstrahlung mit einer elementspezifischen Energie entsteht (charakteristische Röntgenstrahlung). Die Anoden sind heutzutage meist aus Keramiken, wobei die Stellen, auf welche die Elektronen auftreffen, aus Molybdän bestehen. Bei dem Prozess des Beschleunigens und der Abbremsung entsteht nur zu 1% Röntgenstrahlung und zu 99 % Wärme.

Eine weitere Möglichkeit, Röntgenstrahlen zu erzeugen, sind Teilchenbeschleuniger. In ihnen entsteht, wenn der Teilchenstrahl in einem starken Magnetfeld abgelenkt und dadurch quer zu seiner Ausbreitungsrichtung beschleunigt wird, Synchrotronstrahlung. Bis zu einer Maximalenergie enthält die Synchrotronstrahlung das gesamte elektromagnetische Spektrum. Bei passend gewählten Parametern (Stärke des Magnetfeldes und Teilchenenergie) ist dabei auch Röntgenstrahlung vertreten.

[Bearbeiten] Wechselwirkung mit Materie

Die Brechzahl von Materie für Röntgenstrahlen weicht nur wenig von 1 ab. Dies hat zur Folge, dass eine einzelne Röntgenlinse lediglich schwach fokussiert oder defokussiert und man für einen stärkeren Effekt Linsenstapel benötigt. Des Weiteren werden Röntgenstrahlen bei senkrechtem Einfall kaum reflektiert. Trotzdem hat man in der Röntgenoptik Wege gefunden, optische Bauelemente für Röntgenstrahlen zu entwickeln.

Röntgenstrahlen können Materie durchdringen. Sie werden dabei je nach Stoffart unterschiedlich stark geschwächt. Die Schwächung der Röntgenstrahlen ist der wichtigste Faktor bei der radiologischen Bilderzeugung. Die Intensität des Röntgenstrahls nimmt mit der im Material zurückgelegten Weglänge d exponentiell ab (I = I0 e-kd), der Koeffizient k ist dabei materialabhängig und etwa proportional zu Z3λ3 (Z ... Ordnungszahl, λ ... Wellenlänge).

Die Absorption resultiert aus der Photoabsorption und der Compton-Streuung:

  • Bei der Photoabsorption schlägt das Photon ein Elektron aus der Elektronenhülle eines Atoms. Dafür ist eine bestimmte Mindestenergie notwendig. Betrachtet man die Absorptionswahrscheinlichkeit in Abhängigkeit von der Photonenenergie, steigt sie bei Erreichen der Mindestenergie abrupt auf einen Maximalwert an. Zu höheren Photonenenergien nimmt die Wahrscheinlichkeit dann wieder kontinuierlich ab. Wegen dieser Abhängigkeit spricht man auch von einer Absorptionskante. Das Loch in der Elektronenhülle wird wieder durch andere Elektronen aufgefüllt. Dabei entsteht niederenergetische Fluoreszenzstrahlung.
  • Außer an stark gebundenen Elektronen wie bei der Photoabsorption kann ein Röntgen-Photon auch an ungebundenen oder schwach gebundenen Elektronen gestreut werden. Diesen Prozess nennt man Compton-Streuung. Die Photonen erfahren durch die Streuung eine vom Streuwinkel abhängige Verlängerung der Wellenlänge um einen festen Betrag und damit einen Energieverlust. Im Verhältnis zur Photoabsorption tritt die Compton-Streuung erst bei hohen Photonenenergien und vor allem bei leichten Atomen in den Vordergrund.

Bei der Photoabsorption und der Compton-Streuung handelt es sich um inelastische Prozesse, bei denen das Photon Energie verliert und schließlich absorbiert wird. Daneben ist auch elastische Streuung (Rayleigh-Streuung) möglich. Dabei bleibt das gestreute Photon kohärent zum einfallenden und behält seine Energie.

Zusätzlich zu den genannten Prozessen ist für Photonen prinzipiell auch die Paarbildung möglich. Dafür sind jedoch Energien jenseits von ca. 1 MeV nötig, die nicht in den oben angegebenen Bereich für Röntgenphotonen (< 250 keV) fallen.

[Bearbeiten] Biologische Wirkung

Röntgenstrahlung ist ionisierend. Sie kann dadurch Veränderungen im lebenden Organismus bis hin zu Krebs verursachen. Diese meist unerwünschten Effekte begründen die Notwendigkeit des Strahlenschutzes. Die empfindliche Struktur für die Entstehung von Krebs ist die Erbsubstanz (DNA), dabei wird von einem linearen Anstieg der Schäden mit der Dosis ausgegangen. Dies heißt, dass auch eine sehr kleine Strahlendosis ein Risiko birgt, Krebs zu induzieren, wenn auch eben ein sehr kleines Risiko. Röntgenstrahlen durchdringen das Gewebe.

[Bearbeiten] Nachweis

  • Lumineszenzeffekt. Röntgenstrahlen regen bestimmte Stoffe zur Lichtabgabe an ("Fluoreszenz"). Dieser Effekt wird auch bei der radiologischen Bilderzeugung genutzt. Medizinische Röntgenfilme enthalten meistens eine fluoreszierende Folie, die bei Auftreffen eines Röntgenphotons Licht aussendet und die umliegende lichtempfindliche Fotoemulsion belichtet.
  • Photographischer Effekt. Röntgenstrahlen können ebenso wie Licht fotografische Filme direkt schwärzen. Ohne eine fluoreszierende Folie wird eine etwa 10-20fach höhere Intensität benötigt. Der Vorteil liegt in der größeren Schärfe des aufgenommenen Bildes.
  • Einzelne Röntgenphotonen werden im Geiger-Müller-Zählrohr durch die Ionisation eines Zählgases nachgewiesen.
  • In Halbleiterdetektoren erzeugen die Röntgenphotonen Elektron-Loch-Paare in der intrinsischen Zone einer in Sperrrichtung betriebenen Diode. Dadurch wird ein kleiner Strom hervorgerufen, dessen Stärke proportional zur Energie und Intensität der einfallenden Röntgenstrahlung ist.

[Bearbeiten] Sichtbarkeit für das menschliche Auge

Entgegen der weit verbreiteten gegenteiligen Überzeugung, kann das menschliche Auge Röntgenstrahlen teilweise wahrnehmen. Schon kurz nach Röntgens Entdeckung 1895, berichtete Brandes von einem schwachen, blau-grauen Schein, der anscheinend im Auge selbst entstand, wenn es sich in einem abgedunkeltem Raum nahe bei einer Röntgenröhre befand. Daraufhin stellte Röntgen fest, dass auch er diesen Effekt beobachtet hatte. Zuerst hatte er es für Einbildung gehalten, da der Effekt nur von der stärksten Röntgenröhre erzeugt wurde und er ihn deshalb nur einmal bemerkt hatte. Das Wissen, dass Röntgenstrahlung mit dem bloßen, an die Dunkelheit angepassten Auge wahrgenommen werden kann, ist heute weitgehend vergessen. Der Grund dafür ist wahrscheinlich, dass der Versuch heute als unnötig gefährlich und schädlich gilt. Der genaue Mechanismus der Wahrnehmung ist nicht geklärt. Möglich ist der normale Weg über die Erregung der Netzhaut, eine direkte Erregung des Sehnervs oder beispielsweise auch, dass die Röntgenstrahlen im Augapfel Phosphoreszenz hervorrufen, und dann "normales" Licht wahrgenommen wird.

[Bearbeiten] Anwendungen

Röntgenaufnahme einer männlichen Hüfte
Röntgenaufnahme einer männlichen Hüfte

Mit Röntgenstrahlen kann der menschliche Körper durchleuchtet werden, wobei vor allem Knochen, aber bei modernen Geräten auch innere Organe sichtbar werden (siehe auch Röntgen). Dabei wird die Tatsache ausgenutzt, dass das in den Knochen vorkommende Element Calcium mit Z=20 eine deutlich höhere Ordnungszahl hat als die Elemente, aus denen die weichen Gewebe hauptsächlich bestehen, nämlich Wasserstoff (Z=1), Kohlenstoff (Z=6), Stickstoff (Z=7) und Sauerstoff (Z=8). Neben herkömmlichen Geräten, die eine zweidimensionale Projektion produzieren, werden auch Computertomographen eingesetzt, die eine räumliche Rekonstruktion des Körperinneren ermöglichen.

In der Materialphysik, der Chemie und der Biochemie wird Streuung von Röntgenstrahlen zur Strukturaufklärung benutzt. Ein bekanntes Beispiel ist die Strukturaufklärung der DNA. Mit Hilfe der Röntgenphotoelektronenspektroskopie (XPS) kann die elementare Zusammensetzung einer Probe untersucht werden. Zusätzlich bietet XPS die Möglichkeit, chemische Bindungen zu untersuchen.

Darüber hinaus kann mit Röntgenstrahlen auch die Elementzusammensetzung eines Stoffes bestimmt werden. In einer Elektronenstrahl-Mikrosonde (beziehungsweise äquivalent im Elektronenmikroskop) wird die zu analysierende Substanz mit Elektronen bestrahlt, worauf die Atome ionisiert werden und charakteristische Röntgenstrahlung abgeben. Statt mit Elektronen kann auch mit Röntgenstrahlen bestrahlt werden. Dann spricht man von der Röntgenfluoreszenzanalyse (RFA).

[Bearbeiten] Natürliche Röntgenstrahlung

Auf der Erde entstehen Röntgenstrahlen in geringer Intensität im Zuge der Absorption anderer Strahlungsarten, die von radioaktivem Zerfall und der Höhenstrahlung stammen. Röntgenstrahlen, die auf anderen Himmelskörpern entstehen, erreichen die Erdoberfläche nicht, weil sie durch die Atmosphäre abgeschirmt werden. Sie werden mit Röntgensatelliten wie Chandra und XMM-Newton untersucht.

Anmerkung: Röntgenstrahlung im engeren Sinn heißt Strahlung, die durch Beschleunigung von Elektronen und auftreffen derselben auf ein Target künstlich erzeugt wird. Natürlich entstehende elektromagnetische Wellen im Frequenzspektrum der Röntgenstrahlen heißen Gamma-Strahlen.

[Bearbeiten] Entdeckungsgeschichte

Röntgenaufnahme einer linken Hand eines 10-jährigen mit sechs Fingern
Röntgenaufnahme einer linken Hand eines 10-jährigen mit sechs Fingern

Am 28. Dezember 1895 veröffentlichte Wilhelm Conrad Röntgen eine Arbeit über Röntgenstrahlung mit dem Titel: Über eine neue Art von Strahlen. Röntgen gilt als ihr Entdecker, obwohl feststeht, dass schon andere vor ihm Röntgenstrahlen erzeugt haben. In den von Johann Hittorf und William Crookes entwickelten Kathodenstrahlröhren, die auch Röntgen für seine Experimente verwendete, entsteht Röntgenstrahlung, die in Experimenten von Crookes und ab 1892 von Heinrich Hertz und seinem Schüler Philipp Lenard durch Schwärzung von fotografischen Platten nachgewiesen wurde, ohne sich aber offenbar über die Bedeutung der Entdeckung im Klaren zu sein. Auch Nikola Tesla experimentierte ab 1887 mit Kathodenstrahlröhren und erzeugte dabei Röntgenstrahlen, veröffentlichte seine Ergebnisse aber nicht.

Da die genannten Wissenschaftler ihre Kenntnisse nicht bekanntgaben, wusste auch Röntgen nichts davon. Er hat die Röntgenstrahlen unabhängig entdeckt, als er fluoreszierendes Licht beim Betrieb der Kathodenstrahlröhre beobachtete. Zu Röntgens Berühmtheit hat sicherlich auch die Röntgenaufnahme einer Hand seiner Frau beigetragen, die er in seiner ersten Veröffentlichung zur Röntgenstrahlung abbildete. Diese Berühmtheit trug ihm 1901 den ersten Nobelpreis für Physik ein, wobei das Nobelpreiskomitee die praktische Bedeutung der Entdeckung hervorhob. Röntgen nannte seine Entdeckung X-Strahlen. 1896 wurde der heutige Name erstmals eingeführt, während in manchen Sprachräumen (beispielsweise engl. x-rays) der alte Name geblieben ist.

[Bearbeiten] Literatur

  • Ch. R. Friedrich: 100 Jahre Röntgenstrahlen. Erster Nobelpreis für Physik. Materialwissenschaft und Werkstofftechnik 26(11-12), S. 598 - 607 (1995), ISSN 0933-5137

[Bearbeiten] Verwandte Themen

  • Die kurz nach den Röntgenstrahlen entdeckten N-Strahlen erwiesen sich als wissenschaftlicher Irrweg.
  • Die Z-Maschine in New Mexico ist die derzeit stärkste Röntgenquelle der Welt.

[Bearbeiten] Siehe auch

[Bearbeiten] Weblinks

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu