New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Equation of motion - Wikipedia, the free encyclopedia

Equation of motion

From Wikipedia, the free encyclopedia

In physics, equations of motion are equations that describe the behavior of a system (e.g., the motion of a particle under an influence of a force) as a function of time. Sometimes the term refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler-Lagrange equations), and sometimes to the solutions to those equations.

The equations that apply to bodies moving linearly (that is, one dimension) with uniform acceleration are presented below. They are often referred to as SUVAT equations, as the 5 variables they involve are represented by those letters (R = displacement, U = initial velocity, V = final velocity, A = acceleration, T = time)

Contents

[edit] Linear equations of motion

The body is considered at two instants in time: one "initial" point and one "current". Often, problems in kinematics deal with more than two instants, and several applications of the equations are required.

v_f = v_i + a\Delta t \,
d = \begin{matrix} \frac{1}{2} \end{matrix} (v_i + v_f)\Delta t
d = v_i\Delta t + \begin{matrix} \frac{1}{2} \end{matrix} a\Delta t^2
v_f^2 = v_i^2 + 2ad \,
d = v_i\Delta t + \begin{matrix} \frac{1}{2} \end{matrix} a\Delta t^2

where...

v_i \, is the body's initial speed

and its current state is described by:

d \,, the distance travelled from initial state (displacement)
v_f \,, the current speed
\Delta t \,, the time between the initial and current states
a \,, the constant acceleration, or in the case of bodies moving under the influence of gravity, g.

Note that each of the equations contains four of the five variables. When using the above formulae, it is sufficient to know three out of the five variables to calculate the remaining two.

[edit] Classic version

The above equations are often found in the following version:

v = u+at \,...(1)
R = \frac {1} {2}(u+v) t...(2)
R = ut + \frac {1} {2} a t^2...(3)
v^2 = u^2 + 2 a R \,...(4)
R = vt - \frac {1} {2} a t^2...(5)

By substituting (1) into (2), we can get (3) and (5)

where

R = the distance travelled from the initial state to the final state (displacement)
u = the initial speed
v = the final speed
a = the constant acceleration
t = the time taken to move from the initial state to the final state

[edit] Examples

Many examples in kinematics involve projectiles, for example a ball thrown upwards into the air.

Given initial speed u, one can calculate how high the ball will travel before it begins to fall.

The acceleration is normal gravity g. At this point one must remember that while these quantities appear to be scalars, the direction of displacement, speed and acceleration is important. They could in fact be considered as uni-directional vectors. Choosing s to measure up from the ground, the acceleration a must be in fact −g, since the force of gravity acts downwards and therefore also the acceleration on the ball due to it.

At the highest point, the ball will be at rest: therefore v = 0. Using the 4th equation, we have:

R= \frac{v^2 - u^2}{-2g}

Substituting and cancelling minus signs gives:

R = \frac{u^2}{2g}

[edit] Extension

More complex versions of these equations can include a quantity Δs for the variation on displacement (R - R0), R0 for the initial position of the body, and v0 for u for consistency.

v = v_0 + at \,
R = R_0 + \begin{matrix} \frac{1}{2} \end{matrix} (v_0 + v)t \,
R = R_0 + v_0 t + \begin{matrix} \frac{1}{2} \end{matrix}{at^2} \,
(v)^2 = (v_0)^2 + 2a \Delta R \,
R = R_0 + v t - \begin{matrix} \frac{1}{2} \end{matrix}{at^2} \,

However a suitable choice of origin for the one-dimensional axis on which the body moves makes these more complex versions unnecessary.

[edit] Rotational equations of motion

The analogues of the above equations can be written for rotation:

\omega = \omega_0 + \alpha t \,
\phi = \phi_0  + \begin{matrix} \frac{1}{2} \end{matrix}(\omega_0 + \omega)t
\phi = \phi_0 + \omega_0 t + \begin{matrix} \frac{1}{2} \end{matrix}\alpha {t^2} \,
(\omega)^2 = (\omega_0)^2 + 2\alpha \Delta \phi \,
\phi = \phi_0 + \omega t - \begin{matrix} \frac{1}{2} \end{matrix}\alpha {t^2} \,

where:

α is the angular acceleration
ω is the angular velocity
φ is the angular displacement
ω0 is the initial angular velocity
φ0 is the initial angular displacement
Δφ is the variation on angular displacement (φ - φ0).

[edit] Derivation

[edit] Motion equation 1

By definition of acceleration,

a = \frac{\Delta v}{\Delta t}\quad\Rightarrow\quad\ a = \frac{v - u}{t}

Hence

at = v - u \,
v = u + at \,

[edit] Motion equation 2

By definition,

\mathrm{ average\ velocity } = \frac{R}{t}

Hence

\begin{matrix} \frac{1}{2} \end{matrix} (u + v) = \frac{R}{t}
R = \begin{matrix} \frac{1}{2} \end{matrix} (u + v)t

[edit] Motion equation 3

Insert Motion Equation 1 into Motion Equation 2

R = \begin{matrix} \frac{1}{2} \end{matrix} (u + u + at)t
R = \begin{matrix} \frac{1}{2} \end{matrix} (2u + at)t
R = ut + \begin{matrix} \frac{1}{2} \end{matrix} at^2

[edit] Motion equation 4

t = \frac{v - u}{a}

Using Motion Equation 2, replace t with above

R = \begin{matrix} \frac{1}{2} \end{matrix} (u + v) ( \frac{v - u}{a} )
2aR = (u + v)(v - u) \,
2aR = v^2 - u^2 \,
v^2 = u^2 + 2aR \,

[edit] Motion equation 5

Using Motion Equation 1 to replace u in motion equation 3 gives

R = vt - \begin{matrix} \frac{1}{2} \end{matrix} at^2

[edit] See also

[edit] References

  • Fundamentals of Physics Robert Resnick, David Halliday, Jearl Walker

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu