Esfuerzo interno
De Wikipedia, la enciclopedia libre
En ingeniería estructural, los esfuerzos internos son magnitudes físicas con unidades de fuerza sobre área utilizadas en el cálculo de piezas prismáticas como vigas o pilares y también en el cálculo de placas y láminas.
Tabla de contenidos |
[editar] Definición
Los esfuerzos internos sobre una sección plana se definen como un conjunto de fuerzas y momentos estáticamente equivalentes a la distribución de tensiones internas sobre el área de esa sección. Así, por ejemplo, los esfuerzos sobre una sección transversal plana Σ de una viga es igual a la integral de las tensiones t sobre ése área plana. Normalmente se distingue entre los esfuerzos perpendiculares a la sección de la viga (o espesor de la placa o lámina) y los tangentes a la sección de la viga (o superficie de la placa o lámina):
- Esfuerzo normal (normal o perpendicular al plano considerado), es el que viene dado por la resultante de tensiones normales σ, es decir, perpendiculares, al área para la cual pretendemos determinar el esfuerzo normal.
- Esfuerzo cortante (tangencial al plano considerado), es el que viene dado por la resultante de tensiones cortantes τ, es decir, tangenciales, al área para la cual pretendemos determinar el esfuerzo cortante.
Para poder explicar mejor el concepto de esfuerzo es necesario tomar un elemento diferencial de un cuerpo. Debido a que las fuerzas internas pueden presentarse en las tres direcciones posibles (x,y,z), el elemento diferencial será un elemento diferencial volumétrico.
Cada una de las caras tiene un diferencial de área, las fuerzas que son normales a esa cara generan un esfuerzo normal y las fuerzas que son tangentes al elemento diferencial generan esfuerzos cortantes .
[editar] Esfuerzos en vigas y pilares
Para un prisma mecánico o elemento unidimensional los esfuerzos se designan como:
- Esfuerzo normal Nx
- Esfuerzo cortante total V, T o Q
- Esfuerzo cortante según Y Vy
- Esfuerzo cortante según Z Vz
En un abuso de lenguaje es común también que se hable de esfuerzos para hablar de:
- Momento torsor Mx
- Momento flector según Z Mz
- Momento flector según Y My
Cada uno de estos esfuerzos van asociados a cierto tipo de tensión:
- El esfuerzo normal (tracción o compresión) implica la existencia de tensiones normales σ, pero estas tensiones normales también pueden estar producidas por un momento flector, de acuerdo con la ley de Navier.
- Por otro lado los esfuerzos cortantes y el momento torsor implican la existencia de tensiones tangenciales τ.
[editar] Cálculo práctico de esfuerzos en prismas
Consideremos la viga o prisma mecánico que se observa en la primera figura y supongamos que se encuentra vinculado al resto de la estructura de forma isoestática. Supondremos también que sobre este prima actúan fuerzas externas activas en el plano de su eje baricéntrico (o línea recta que uno los baricentros de todas las secciones transversales rectas del prisma).
El primer paso es dividir el rígido en dos bloques más pequeños. Quedan determinados los blocs 1 y 2 de la figura.
Seguidamente estudiaremos el bloque 1, donde aparecen 2 fuerzas externas reactivas actuando (P1 y P1). Como se puede ver este bloque ahora no se encuentra vinculado isoestáticamente, así que para que pueda quedar en equilibrio deben excistir fuerzas que equilibren al mismo. Estas fuerzas son fuerzas reactivas también y corresponden a la acción del bloque 2 sobre el bloque 1. Las fuerzas reactivas del bloque 2 sobre el 1 pueden ser reducidas a una fuerza y un momento actuando sobre el baricentro de la sección recta A. De hecho estas fuerzas y momentos son la fuerza resultante y el momento resultante de la distribución de tensiones sobre el área recta A.
Como estamos tratando el caso especial de fuerzas externas activas actuando sobre el plano del eje baricéntrico, el momento y la fuerza al que se reducen las fuerzas reactivas del bloque 2 sobre el bloque 1, deben de ser una fuerza contenida en dicho plano y un momento perpendicular a mismo plano.
Llamaremos a la fuerza R2-1 del bloque 2 sobre el bloque y al momento lo llamaremos M2-1. La fuerza R2-1 puede descomponerse en una componente vertical y otra horizontal en el plano que se halla contenida. Llamaremos R2-1,y a la fuerza descompuesta en sentido vertical y R2-1,x a la descompuesta en sentido horizontal. Resumiendo tenemos que el sistema de fuerzas en equilibrio que está formado por:
- Las fuerzas activas externas sobre el bloque 1.
- Las fuerzas reactivas P1 y P2.
- Las fuerzas reactivas R2-1,x, R2-1,y y el momento M2-1.
A las fuerzas reactivas R2-1,x, R2-1,y y al momento M2-1 se los conocen como esfuerzos internos. Y representan respectivamente el esfuerzo normal (N = R2-1,x), el esfuerzo de corte (Q = R2-1,y) y el Momento flector (Mf = M2-1).