New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Orientation (mathématiques) - Wikipédia

Orientation (mathématiques)

Un article de Wikipédia, l'encyclopédie libre.

Pour les articles homonymes, voir Orientation. 

En géométrie, une orientation est une convention à fixer pour l'objet étudié, qui se révèle nécessaire dans le cadre de certaines études. Par exemple, cette convention permet de régler certains problèmes de signes.

Si l'espace de dimension 3 usuel, ainsi que certaines figures classiques de la géométrie possèdent une orientation canonique, l'orientation d'espaces ou de figures plus générales relève d'une convention arbitraire. Tous les objets concernés n'admettent pas forcément une orientation : si tel est le cas, ils sont dits orientables.

Sommaire

[modifier] Orientation d'une courbe

L'orientation d'une courbe (en toute rigueur, différentiable) est imposée par le choix d'une paramétrisation. Une courbe a exactement deux orientations. Intuitivement, l'orientation d'une courbe est un sens de parcours : si on se représente une courbe par une route à double sens, il y a deux façons différentes de la parcourir suivant le sens dans lequel on roule. Formellement, deux paramétrisations définissent la même orientation lorsque les vecteurs dérivés sont positivement proportionnels ; on définit ainsi une relation d'équivalence sur l'ensemble des paramétrisations d'une courbe, et on dispose de deux classes d'équivalence distinctes, appelées orientations. Si c(t) est un paramétrage de la courbe (t est un paramètre réel), le sens direct est le sens dans lequel t augmente. L'application t\mapstoc(-t) est un autre paramétrage qui définit la seconde orientation.

Pour une courbe définie dans un espace vectoriel réel euclidien E, l'abscisse curviligne est une version orientée de la longueur. Sa définition dépend d'un choix arbitraire de signe qui correspond exactement au choix d'une orientation de la courbe. L'abscisse curviligne augmente quand on parcourt la courbe dans le sens direct, et diminue donc dans l'autre sens. On peut choisir librement son origine, c'est-à-dire le point où elle prend la valeur 0. L'abscisse curviligne est alors positive ou négative selon qu'on est en-deçà ou au-delà de l'origine.

Un premier exemple parlant est celui du cercle unité. Il est vu comme une courbe de R2 définie par :

c(t)=\left[\cos(t), \sin(t)\right].

Ce paramétrage naturel définit une orientation du cercle unité, appeléé orientation trigonométrique ou sens anti-horaire.

Un exemple plus élémentaire est une droite affine D d'un espace vectoriel réel E (éventuellement de dimension infini). Les paramétrages classiques sont donnés par le choix d'un point M de D et d'un vecteur directeur v de D ; le paramétrage correspondant est t / mapsto M+t.v. De tels paramétrages définissent la même orientation de D lorsque les vecteurs directeurs correspondants sont positivement colinéaires. La droite réelle R est naturellement orientée par les réels positifs.

[modifier] Orientation d'un espace affine

L'orientation d'une droite affine dépend du choix d'un vecteur directeur, ou plutot du choix d'un tel vecteur à positive colinéarité près. Le choix d'une orientation pour un espace affine de dimension finie doit donc dépendre du choix d'un repère ; mais l'origine doit jouer un role secondaire dans la définition. L'orientation est donc imposée par le choix d'une base de l'espace directeur.

Deux bases d'un espace vectoriel réel E définissent la même orientation lorsque le déterminant de la matrice de passage est (strictement) positif. Cette matrice est évidemment inversible : son déterminant est donc non nul. Est ainsi définie une relation d'équivalence sur l'ensemble des bases de E, relation admettant exactement deux classes d'équivalence, les orientations de E.

Une fois fixée une orientation, une base de E est dite base directe ou base indirecte selon que cette base définit l'orientation choisie ou l'autre. Une orientation d'un espace affine est une orientation de l'espace directeur. Le vocabulaire correspondant est repère direct ou repère indirect.

Cette définition généralise fort heureusement la situation en dimension 1.

[modifier] Orientation d'un plan

Pour un plan vectoriel P, le choix d'une orientation est imposé par le choix de deux vecteurs non colinéaires, formant donc une base (\vec i, \vec j). Intuitivement, l'orientation d'un plan consiste à définir la manière de trouner autour d'un point. On tourne autour de 0 en parcourant une courbe enfermant 0, en allant de \vec i en direction de \vec j et en retournant à \vec i sans faire demi-tour. Il n'est donc pas étonnant à ce que la question de l'orientation soit lié au problème des angles orientés en géométrie euclidienne.

L'orientation d'un plan vectoriel euclidien E se résume essentiellement au choix d'une orientation de son cercle unité. Cette orientation revient à fixer un signe au niveau des mesures d'angle.

Par le théorème de Jordan, une courbe de Jordan, id est une courbe périodique et simple (injective sur une période), d'un plan orienté P borde un domaine compact du plan P (voir figure). Il existe donc une notion naturelle d'intérieur et d'extérieur. On impose à un paramétrage c que pour tout vecteur sortant n(t) en c(t), (c '(t), n(t)) soit une base directe. Ainsi, toute courbe de Jordan d'un plan orienté est naturellement orientée.

[modifier] Orientation de l'espace de dimension trois

Orienter l'espace consiste également à choisir une base directe arbitraire. On respecte généralement la règle des trois doigts de la main droite. Un plan et une droite perpendiculaires peuvent être orientés corrélativement. Les règles du bonhomme d'Ampère et du tire-bouchon de Maxwell sont utilisés par les physiciens pour expliquer intuitivement ce que signifie orienter l'espace.

Si cette convention est choisie, alors on a concrètement :

  • Le sens direct de l'espace correspond au mouvement d'une vis que l'on visse dans une plaque de bois ;
  • Son sens indirect correspondant alors au mouvement de la vis que l'on dévisse de cette plaque de bois.

L'orientation d'un espace vectoriel euclidien de dimension 3 autorise l'introduction du produit vectoriel. L'orientation intervient dans le choix du sens du vecteur \vec{i} \wedge \vec{j}.

[modifier] Espace vectoriel complexe

Un espace vectoriel complexe E est, en tant qu'espace vectoriel réel, naturellement orientable.

[modifier] Orientation d'une surface

La définition de l'orientation d'une surface dépend de la manière de regarder cette surface (points de vue intrinsèque ou extrinsèque).

Une orientation d'une surface S est la donnée d'orientations de ses plans tangents TMS, et qui en un sens à préciser sont compatibles. Si ce plan tangent peut se réaliser comme un plan vectoriel de R3, le choix d'une orientation se résume au choix d'une orientation sur l'orthogonal, qui est une droite vectorielle. La définition de l'orientation des surfaces plongées dans R3 est dont particulière.

Une surface S de R3 est dite orientable lorsqu'il existe une application continue n:S\rightarrowR3 telle que, en chaque point M de la surface S, le vecteur n(M) est non nul et orthogonal au plan tangent TMS. Une telle application n est appelée champ de vecteurs normaux de S. Deux tels champs n et m définissent la même orientation de S lorsque, en tout point M de S, n(M), et m(M) sont positivement colinéaires. On définit ainsi une relation d'équivalence sur les champs de vecteurs normaux, et les classes d'équivalence sont les orientations de S. Lorsque S est connexe, il existe exactement deux orientations distinctes.

Orienter la surface orientable connexe, c'est choisir une des deux orientations.

Les définitions se généralisent directement pour les hypersurfaces de Rn.

Il faut savoir que toute hypersurface compacte de Rn est orientable : cette propriété est une généralisation du théorème de Jordan en dimension >2.

[modifier] Orientabilité et orientation pour une variété

anneau de Möbius
anneau de Möbius

Considérons une variété topologique de dimension n. Étant donnée une orientation de Rn, chaque carte permet d'orienter le morceau de la variété qu'il décrit. Toutefois, pour la variété prise globalement, il n'y pas de raison pour que les graphes se recouvrant voient leur orientation s'accorder. Les variétés, telles que la sphère, où les différents graphes peuvent être choisis pour que les régions se recouvrant s'accordent sur leur orientation, sont appelées variétés orientables. En topologie différentielle, une des façons de définir cette notion d'orientabilité et d'orientation est d'introduire la forme volume.

On peut citer quelques exemples de variétés non orientables : (1) l'anneau de Möbius, qui est une variété avec bords, (2) la bouteille de Klein et (3) le plan projectif réel qui apparaît naturellement en géométrie. Des constructions topologiques de ces surfaces sont proposées dans les articles dédiés.


[modifier] Approche homologique de l'orientation

Une orientation d'un espace topologique est la donnée d'un générateur ex du groupe Hn(X,X-x,Z) pour tout point x de X, et de sorte que, pour tout point x, il existe un voisinage compact Vx et d'un élément u de Hn(X,X-Vx,Z) dont la restriction dans Hn(X,X-y) est ey pour tout y.

Un espace topologique est dit orientable s'il admet au moins une orientation. S'il est connexe et orientable, il admet exactement deux orientations.

Les exemples les plua simples d'espaces topologiques orientables sont les espaces discrets. Une orientation se résume essentiellement à un choix de signes + ou - associés à chaque point de l'ensemble, sans contraintes. L'ensemble des orientations d'un espace discret X est de cardinal 2|X|.

[modifier] Voir aussi

Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques.
Autres langues

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu