Solide de révolution
Un article de Wikipédia, l'encyclopédie libre.
Cet article est une ébauche à compléter concernant la géométrie, vous pouvez partager vos connaissances en le modifiant. |
Un solide de révolution est un solide engendré par la rotation complète d'une surface finie autour d'un axe de l'espace.
Le cylindre, la boule, le cône sont des exemples simples de solides de révolution.
Les solides géométriques | ||||
Les solides de Platon | ||||
Tétraèdre - Cube - Octaèdre - Icosaèdre - Dodécaèdre | ||||
Les solides d'Archimède | ||||
Tétraèdre tronqué - Cube tronqué - Octaèdre tronqué - Dodécaèdre tronqué - Icosaèdre tronqué - Cuboctaèdre - Cube adouci - Icosidodécaèdre - Dodécaèdre adouci - Petit rhombicuboctaèdre - Grand rhombicuboctaèdre - Petit rhombicosidodécaèdre - Grand rhombicosidodécaèdre | ||||
Les solides de Kepler-Poinsot | ||||
Petit dodécaèdre étoilé - Grand dodécaèdre étoilé - Grand dodécaèdre - Grand icosaèdre | ||||
Les solides de Catalan | ||||
Triakioctaèdre - Tétrakihexaèdre - Triakitétraèdre - Pentakidodécaèdre - Triaki-icosaèdre - Dodécaèdre rhombique - Icositétraèdre pentagonal - Triacontaèdre rhombique - Hexacontaèdre pentagonal - Icositétraèdre trapézoïdal - Hexakioctaèdre - Hexacontaèdre trapézoïdal - Hexaki icosaèdre | ||||
Les solides de Johnson | ||||
Les solides de révolution | ||||
Sphère - Cylindre de révolution - Cône de révolution - Tore - Paraboloïde de révolution |
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques. |