New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Teorema della categoria di Baire - Wikipedia

Teorema della categoria di Baire

Da Wikipedia, l'enciclopedia libera.

Il Teorema della categoria di Baire è un importante strumento della topologia generale e dell' analisi funzionale. Il teorema è disponibile in due versioni, ciascuna delle quali fornisce una condizione sufficiente affinché uno spazio topologico sia uno spazio di Baire.

Indice

[modifica] Enunciato del teorema

Nessuna delle due proposizioni implica l'altra poiché non necessariamente uno spazio metrico completo è localmente compatto (un esempio è dato dallo spazio di Baire dei numeri irrazionali) così come uno spazio di Hausdorff localmente compatto non è necessariamente metrizzabile (un esempio è dato dallo spazio di Fort non numerabile). Per ulteriori dettagli, si veda Steen e Seebach in bibliografia.

Si dice che un sottoinsieme di uno spazio metrico è denso in nessun luogo se la sua chiusura ha interno vuoto. Il teorema di Baire può essere formulato nel seguente modo:

  • (TCB3) Uno spazio metrico completo non può essere unione numerabile di insiemi densi in nessun luogo.

La seguente versione è largamente utilizzata come teorema di esistenza.

  • (TCB4) In uno spazio metrico completo l'intersezione numerabile di aperti densi è aperta e densa.

[modifica] Dimostrazione

Diamo la dimostrazione del teorema nella forma TCB3. Sia (X,d) uno spazio metrico completo e supponiamo, per assurdo, X=\bigcup_{n=1}^{\infty} A_n, dove \overline{A_n} ha interno vuoto per ogni n\in \textbf{N}.

Scegliamo x_1\in X ed r\in \left]0,1\right[ tali che B(x_1,r_1)\cap A_1 =\emptyset; ciò è possibile perché la chiusura di A1 ha interno vuoto. Con B(x,r) indichiamo la palla aperta in X di centro x e raggio r. Ora scegliamo x_2\in B(x_1,r_1) e r_2\in \left]0,\frac{1}{2}\right[ tale che \overline{B(x_2,r_2)}\subseteq B(x_1,r_1) e B(x_2,r_2)\cap A_2=\emptyset, il chè è possibile perché la chiusura di A2 ha interno vuoto. Iterando il procedimento costruiamo una successione (xn) in X ed una successione (rn) in \textbf{R} tali che 0< r_n < \frac{1}{2^{n-1}}, \overline{B(x_n,r_n)}\subseteq B(x_{n-1},r_{n-1}) e B(x_n,r_n)\cap A_n=\emptyset \quad \forall n\in \textbf{N}.

Ne segue che, per ogni n,m\in \textbf{N} tali che n,m\ge N risulta d(x_n,x_m)\le \frac{1}{2^{N-1}} e pertanto la successione (xn) è di Cauchy e quindi convergente ad un certo x\in X. Ma d'altronde risulta x\notin A_n per ogni n\in\textbf{N} e pertanto si ha x\notin \cup_{n=1}^{\infty} A_n = X, il chè è assurdo e quindi il teorema è provato.

[modifica] Relazione con l'Assioma della Scelta

Le dimostrazioni di entrambe le versioni richiedono l' Assioma della scelta; infatti la proposizione che ogni spazio pseudometrico completo è uno spazio di Baire è logicamente equivalente ad una più debole formulazione dell'Assioma della Scelta nota come Assioma della scelta dipendente. [1]

[modifica] Applicazioni del teorema

TCB1 è utilizzato nelle dimostrazioni del teorema della funzione aperta, del teorema del grafico chiuso e del principio dell'uniforme limitatezza.

TCB1 mostra inoltre che ogni spazio metrico completo privo di punti isolati è non numerabile (se X è uno spazio metrico completo numerabile privo di punti isolati, allora ogni singoletto {x} in X è denso in nessun luogo e pertanto X stesso è di prima categoria). In particolare, ciò prova che l'insieme di tutti i numeri reali è non numerabile.

TCB1 mostra che ciascuno dei seguenti insiemi è uno spazio di Baire:

  • L'insieme R dei numeri reali
  • L' insieme di Cantor
  • Ogni varietà (in quanto insiemi localmente compatti)
  • Ogni spazio topologico omeomorfo ad uno spazio di Baire (per esempio, l'insieme dei numeri irrazionali che non è completo rispetto alla metrica ereditata da R)

Ulteriori applicazioni di TCB1 e le sue relazioni con fenomeni simili sono riportate in Bwatabaire (il sito è quasi interamente in francese; alcune pagine sono in inglese).

[modifica] Bibliografia

  • Schechter, Eric, Handbook of Analysis and its Foundations, Academic Press, ISBN 0-126-22760-8
  • Lynn Arthur Steen e J. Arthur Seebach, Jr., Counterexamples in Topology, Springer-Verlag, New York, 1978. Ristampato da Dover Publications, New York, 1995. ISBN 0-486-68735-X (Dover edition).

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu