フォーク定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』
ゲーム理論において、フォーク定理(フォークていり、folk theorem)とは、無限回の繰り返し囚人のジレンマ・ゲームにおいて、協調解が均衡解として成立するという理論である。
有限回の囚人のジレンマ・ゲームでは非協力解が均衡解となる。しかし同じゲームでも無限回の繰り返しゲームになると協調解がナッシュ均衡解として成立することが比較的早い段階で知られていたが、これは公式に発表されてこなかった。数学の諸分野では、「証明をつけようと思えばつけられると誰もが思っているが、実際には誰一人としてその証明をつけた事がない定理」の事を一般にfolklore(民間伝承)と呼ぶので、この定理はフォーク(folk)定理と呼ばれるようになった。 その後、アリエル・ルービンシュタインは繰り返しゲームにおいて、将来利得が現在利得と同程度に評価される場合には、パレート最適な配分を含む多くの協調的な利得ベクトルが繰り返しゲームの完全均衡点として実現できることを示した。無限回ゲームの下では報復が可能であり、今回非協力な相手に対して、次回非協力で報復することが可能である。他のプレイヤーの行動が決まれば、プレイヤー i の利得の上限も決まる。他のプレイヤーがプレイヤー i の利得の上限を最も小さくするような行動のことをミニマックス行動と呼び、そのときのプレイヤー i の利得をミニマックス利得と呼ぶ。
例えば、しっぺ返し戦略(最初は協力を選択するが、2回目以降は相手の前回の行動と同じ行動をとるという戦略)を考えよう。相手がしっぺ返し戦略を採用する場合に、こちらが裏切ると、その回は自己の利益になるが、次回には相手から報復を受け、せいぜいミニマックス利得以下の利益しかもたらさない。他方、相手が裏切った場合には、こちらが報復しないと自己の利益が損なわれるので、報復したほうがよい。そのため、将来の利得の割引率が低い場合には、しっぺ返し戦略は均衡解となる。このとき、互いの合意がなくても暗黙の協調が生まれ、このときの利得はミニマックス利得を上回る。
ゲーム理論のトピックス | |
定義 | 協力ゲーム - 非協力ゲーム |
均衡 | ナッシュ均衡 - 部分ゲーム完全均衡 - ベイジアン・ナッシュ均衡 - 逐次均衡 - 完全均衡 - 合理化可能性 - 進化的に安定な戦略 - パレート最適- 戦略的補完性 |
ゲームのクラス | 標準型ゲーム - 展開型ゲーム - 提携型ゲーム - 完全情報ゲーム - 不完全情報 - 繰り返しゲーム - ゼロ和 - 非ゼロ和 - 二人零和有限確定完全情報ゲーム |
ゲーム | 囚人のジレンマ - チキンゲーム - スタグハントゲーム |
理論 | ミニマックス法 - フォーク定理 - コアの極限定理 |
関連項目 | 数学 - 経済学 - 進化論 - 集団遺伝学 - オペレーションズリサーチ - 社会生物学- 環境社会学 |