Topologia algebraiczna
Z Wikipedii
Topologia algebraiczna – dział matematyki, który zajmuje się badaniem przestrzeni topologicznych przy użyciu metod o charakterze algebraicznym. Zazwyczaj polega ono na tym, że przestrzeniom topologicznym przyporządkowuje się pewne obiekty algebraiczne (przykładem takiego obiektu może być tak zwana grupa podstawowa przestrzeni topologicznej). Przyporządkowanie takie powinno spełniać określone warunki, na przykład taki, że obiekty przyporządkowane przestrzeniom homeomorficznym (czyli izomorficznym w sensie topologicznym) są izomorficzne w sensie algebraicznym. Następnie bada się uzyskane struktury algebraiczne i na tej podstawie wyciąga wnioski dotyczące własności wyjściowych przestrzeni topologicznych. Wykorzystuje się w tym celu między innymi przekształcenia pomiędzy kategorią przestrzeni topologicznych i kategorią struktur algebraicznych określonego rodzaju, które określa się mianem funktorów. Te ostatnie stanowią jedno z podstawowych pojęć teorii kategorii, która - podobnie jak algebra homologiczna - właśnie w topologii algebraicznej znajduje najliczniejsze zastosowania.
[edytuj] Przegląd zagadnień z topologii algebraicznej
- przestrzeń nakrywająca
- podniesienie drogi
- grupa podstawowa
- grupa podstawowa przestrzeni nakrywającej