Isometria (transformação geométrica)
Origem: Wikipédia, a enciclopédia livre.
Isometria é uma transformação geométrica que, aplicada a uma figura geométrica, mantém as distâncias entre pontos. Ou seja, os segmentos da figura transformada são geometricamente iguais aos da figura original, podendo variar a direcção e o sentido. Os ângulos mantêm também a sua amplitude. Existem isometrias simples e isometrias compostas. As isometrias simples podem ser rotações, translações e reflexões.
O geómetra alemão Felix Klein no seu célebre programa de Erlangen (1872) sugeriu que a "simetria" (conceito que, em português, poderia ser mais fielmente traduzido por "isometria") seria o princípio organizador e unificador da geometria (na altura utilizava-se o termo "geometrias", no plural). Este é um princípio mais abrangente que axiomático. Inicialmente abriu caminho a investigações sobre grupos relacionados com as "geometrias"). Em consequência, estabeleceu-se o termo "transformação geométrica" (aspecto da Nova Matemática, mas muito controverso na prática matemática actual). Este conceito é, hoje, aplicado, sob várias formas, como um modelo aplicado na resolução de vários problemas.
[editar] Definição
Uma aplicação entre espaços métricos diz-se uma isometria se
.