Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Многочлены Чебышёва — Википедия

Многочлены Чебышёва

Материал из Википедии — свободной энциклопедии

Многочле́ны Чебышёва — две последовательности многочленов, названные в честь их первооткрывателя Пафнутия Львовича Чебышёва.

Первая последовательность, Tn(x), многочлен Чебышёва первого рода характеризуется как многочлен степени n > 1 со старшим коэффициентом 2n-1, который меньше всего отклоняется от нуля на интервале [-1,1].

Вторая последовательность, Un(x), многочлен Чебышёва второго рода характеризуется как многочлен степени n со старшим коэффициентом 2n, интеграл абсолютного значения которого по интервалу [-1,1] наименьший возможный.

Содержание

[править] Рекурсивное определение

Многочлены Чебышёва первого рода Tn(x) могут быть определены с помощью рекуррентного соотношения:

T_0(x) = 1 \,
T_1(x) = x \,
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x). \,

Многочлены Чебышёва второго рода Un(x) могут быть определены с помощью рекуррентного соотношения:

U_0(x) = 1 \,
U_1(x) = 2x \,
U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x). \,

[править] Явные формулы

Из теории линейных рекуррент можно вывести явную формулу для многочленов Чебышёва: T_n(x)=\frac{1}{2}[(x+\sqrt{x^2-1})^n+(x-\sqrt{x^2-1})^n]. Однако, вычисления по этой формуле требуют работы с комплексными числами при x\in[-1;1].

[править] Тригонометрическое определение

Многочлены Чебышёва первого рода Tn(x) могут быть также определены с помощью равенства:

T_n(\cos(\theta))=\cos(n\theta). \,

Многочлены Чебышёва второго рода Un(x) могут быть также определены с помощью равенства:

U_n(\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin\theta}.

[править] Примеры

Несколько первых многочленов Чебышёва первого рода

T_0(x) = 1 \,
T_1(x) = x \,
T_2(x) = 2x^2 - 1 \,
T_3(x) = 4x^3 - 3x \,
T_4(x) = 8x^4 - 8x^2 + 1 \,
T_5(x) = 16x^5 - 20x^3 + 5x \,
T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1 \,
T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x \,

Несколько первых многочленов Чебышёва второго рода

U_0(x) = 1 \,
U_1(x) = 2x \,
U_2(x) = 4x^2 - 1 \,
U_3(x) = 8x^3 - 4x \,
U_4(x) = 16x^4 - 12x^2 + 1 \,
U_5(x) = 32x^5 - 32x^3 + 6x \,
U_6(x) = 64x^6 - 80x^4 + 24x^2 - 1 \,

[править] Свойства

Многочлены Чебышёва обладают следующими свойствами:

  • Ортогональность по отношению к соответствующим скалярному произведению.
  • Минимальность нормы на отрезке [ − 1,1] среди всех полиномов имеющих такой же коэффициент при старшей степени.
  • Среди всех полиномов, имеющих на отрезке [ − 1,1] норму, не превышающую норму полинома Чебышёва, полинимом Чебышева первого рода принимает наибольшие по модулю значения за пределами этого отрезка.
  • Нули полинома Чебышёва являются оптимальными узлами в различных интерполяционных схемах.

[править] Ссылки

 
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu