Правило Лопиталя
Материал из Википедии — свободной энциклопедии
В математическом анализе правилом Лопита́ля называют метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и . Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.
Содержание |
[править] Точная формулировка
Правило говорит, что если функции f(x) и g(x) обладают следующим набором условий:
- или ;
- ;
- в некоторой окрестности точки a,
тогда существует . При этом теорема верна и для других баз (для указанной будет приведено доказательство).
[править] История
Способ раскрытия такого рода неопределённостей был опубликован Лопиталем в его сочинении «Анализ бесконечно малых», изданном в 1696 году. В предисловии к этому сочинению Лопиталь указывает, что без всякого стеснения пользовался открытиями Лейбница и братьев Бернулли и «не имеет ничего против того, чтобы они предъявили свои авторские права на все, что им угодно». Иоганн Бернулли предъявил претензии на все сочинение Лопиталя целиком и в частности после смерти Лопиталя опубликовал работу под примечательным названием «Усовершенствование моего опубликованнного в „Анализе бесконечно малых“ метода для определения значения дроби, числитель и знаменатель которой иногда исчезают», 1704.
[править] Доказательство
1. Докажем теорему для случая, когда пределы функций равны нулю (т. н. неопределённость вида ).
Поскольку мы рассматриваем функции f и g только в правой проколотой полуокрестности точки a, мы можем непрерывным образом их доопределить в этой точке: пусть f(a) = g(a) = 0. Возьмём некоторый x из рассматриваемой полуокрестности и применим к отрезку теорему Коши. По этой теореме получим:
- ,
но f(a) = g(a) = 0, поэтому .
Дальше, записав определение предела отношения производных и обозначив последний через A, из полученного равенства выводим:
- для конечного предела и
- для бесконечного,
что является определением предела отношения функций.
2. Докажем теорему для неопределённостей вида .
Пусть, для начала, предел отношения производных конечен и равен A. Тогда, при стремлении x к a справа, это отношение можно записать как A + α, где α — O(1). Запишем это условие:
- .
Зафиксируем t из отрезка и применим теорему Коши ко всем x из отрезка :
- , что можно привести к следующему виду:
- .
Для x, достаточно близких к a, выражение имеет смысл; предел первого множителя правой части равен единице (так как f(t) и g(t) — константы, а f(x) и g(x) стремятся к бесконечности). Значит, этот множитель равен 1 + β, где β — бесконечно малая функция при стремлении x к a справа. Выпишем определение этого факта, используя то же значение , что и в определении для α:
- .
Получили, что отношение функций представимо в виде (1 + β)(A + α), и . По любому данному можно найти такое , чтобы модуль разности отношения функций и A был меньше , значит, предел отношения функций действительно равен A.
Если же предел A бесконечен (допустим, он равен плюс бесконечности), то
- .
В определении β будем брать ; первый множитель правой части будет больше 1/2 при x, достаточно близких к a, а тогда .
Для других баз доказательства аналогичны приведённым.
[править] Примеры
- ;
- при a > 0.