New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Spherical harmonics - Wikipedia, the free encyclopedia

Spherical harmonics

From Wikipedia, the free encyclopedia

In mathematics, the spherical harmonics are the angular portion of an orthogonal set of solutions to Laplace's equation represented in a system of spherical coordinates. Spherical harmonics are important in many theoretical and practical applications, particularly in the computation of atomic electron configurations, the representation of the gravitational field, geoid, and magnetic field of planetary bodies, as well as characterization of the cosmic microwave background radiation.

Contents

[edit] Introduction

Real spherical harmonics Ylm, for l=0 to 4 (top to bottom) and m=0 to 4 (left to right). The negative order harmonics Yl-m are rotated about the z axis by 90/m degrees with respect to the positve order ones.
Real spherical harmonics Ylm, for l=0 to 4 (top to bottom) and m=0 to 4 (left to right). The negative order harmonics Yl-m are rotated about the z axis by 90/m degrees with respect to the positve order ones.

Laplace's equation in spherical coordinates is:

\nabla^2 f = {1 \over r^2}{\partial \over \partial r}\left(r^2 {\partial f \over \partial r}\right)    + {1 \over r^2\sin\theta}{\partial \over \partial \theta}\left(\sin\theta {\partial f \over \partial \theta}\right)    + {1 \over r^2\sin^2\theta}{\partial^2 f \over \partial \varphi^2} = 0

(see also del in cylindrical and spherical coordinates). For f(r,θ,φ) = R(r)Θ(θ)Φ(φ), the angular portion of Laplace's equation satisfies

{\Phi(\varphi) \over \sin\theta}{d \over d\theta}\left(\sin\theta {d\Theta \over d\theta} \right) + {\Theta(\theta) \over \sin^2 \theta}{d^2\Phi \over d\varphi^2} + l(l+1)\Theta(\theta)\Phi(\varphi) = 0.

Using the technique of separation of variables, the angular solutions can be shown to be a products of trigonometric functions and associated Legendre functions:

Y_\ell^m (\theta, \varphi ) = N \, e^{i m \varphi } \, P_\ell^m (\cos{\theta} ),

where Y_\ell^m is a called a spherical harmonic function of degree \ell and order m, P_\ell^m is an associated Legendre function, N is a normalization constant, and θ and \varphi represent colatitude and longitude, respectively. The spherical coordinates used in this article are consistent with those used by physicists, but differ from those employed by mathematicians (see spherical coordinates). In particular, the colatitude θ, or polar angle, ranges from 0\leq\theta\leq\pi and the longitude \varphi, or azimuth, ranges from 0\leq\varphi<2\pi. Thus, θ is 0 at the North Pole, π / 2 at the Equator, and π at the South Pole.

When Laplace's equation is solved on the surface of the sphere, the periodic boundary conditions in \varphi, as well as regularity conditions at both the north and south poles, ensure that the degree \ell and order m are integers that satisfy \ell \ge 0 and |m| \le \ell. In contrast, if the function f were only to have been defined for \theta \le \theta_0, then the resulting spherical cap harmonics would have been defined for integer order, but non-integer degree. The general solution to Laplace's equation is a linear combination of the spherical harmonic functions multiplied by the solutions of R(r):

f(r, \theta, \varphi) = \sum_{\ell=0}^\infty \sum_{m=-\ell}^\ell r^{-1-\ell} \, f_\ell^m \, Y_\ell^m (\theta, \varphi ) +  \sum_{\ell=0}^\infty \sum_{m=-\ell}^\ell  r^\ell  \, f_\ell^{m'} \, Y_\ell^m (\theta, \varphi ),

where f_\ell^m and f_\ell^{m'} are constants. The terms in the first summation approach zero as r goes to infinity, whereas the terms in the second summation approach zero at the origin.

[edit] Normalizations

Several different normalizations are in common use for the spherical harmonic functions. In physics and seismology, these functions are generally defined as

Y_\ell^m( \theta , \varphi ) = \sqrt{{(2\ell+1)\over 4\pi}{(\ell-m)!\over (\ell+m)!}}  \, P_\ell^m ( \cos{\theta} ) \, e^{i m \varphi }

which are orthonormal

\int_{\theta=0}^\pi\int_{\varphi=0}^{2\pi}Y_\ell^m \, Y_{\ell'}^{m'*} \, d\Omega=\delta_{\ell\ell'}\, \delta_{mm'},

where δaa = 1, δab = 0 if a ≠ b, (see Kroenecker delta) and d\Omega=\sin\theta\,d\varphi\,d\theta. The disciplines of geodesy and spectral analysis use

Y_\ell^m( \theta , \varphi ) =  \sqrt{{(2\ell+1) }{(\ell-m)!\over (\ell+m)!}} \, P_\ell^m ( \cos{\theta} )\, e^{i m \varphi }

which possess unit power

{1 \over 4 \pi} \int_{\theta=0}^\pi\int_{\varphi=0}^{2\pi}Y_\ell^m \, Y_{\ell'}^{m'*} d\Omega=\delta_{\ell\ell'}\, \delta_{mm'}.

The magnetics community, in contrast, uses Schmidt semi-normalized harmonics

Y_\ell^m( \theta , \varphi ) = \sqrt{{(\ell-m)!\over (\ell+m)!}}  \, P_\ell^m ( \cos{\theta} ) \, e^{i m \varphi }

which have the normalization

\int_{\theta=0}^\pi\int_{\varphi=0}^{2\pi}Y_\ell^m \, Y_{\ell'}^{m'*}d\Omega={4 \pi \over (2 \ell + 1)}\delta_{\ell\ell'}\, \delta_{mm'}.

Using the identity (see associated Legendre functions)

P_\ell ^{-m} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!} P_\ell ^{m}

it can be shown that all of the above normalized spherical harmonic functions satisfy

Y_\ell^{m*} (\theta, \varphi) = (-1)^m Y_\ell^{-m} (\theta, \varphi),

where the superscript * denotes complex conjugation.

[edit] Condon-Shortley Phase

One source of confusion with the definition of the spherical harmonic functions concerns a phase factor of (-1)^m\,, commonly referred to as the Condon-Shortley phase in the quantum mechanical literature. In the quantum mechanics community, it is common practice to either include this phase factor in the definition of the associated Legendre functions, or to append it to the definition of the spherical harmonic functions. There is no requirement to use the Condon-Shortley phase in the definition of the spherical harmonic functions, but including it can simplify some quantum mechnical operations. The geodesy and magnetics communities never include the Condon-Shortley phase factor in their definitions of the spherical harmonic functions.

[edit] Spherical harmonics expansion

The spherical harmonics form a complete set of orthonormal functions and thus form a vector space analogous to unit basis vectors. On the unit sphere, any square-integrable function can thus be expanded as a linear combination of these:

f(\theta,\varphi)=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^\ell f_\ell^m \, Y_\ell^m(\theta,\varphi).

This expansion is exact as long as \ell goes to infinity. Truncation errors will arise when limiting the sum over \ell to a finite bandwidth L. The expansion coefficients can be obtained by multiplying the above equation by the complex conjugate of a spherical harmonic, integrating over the solid angle \Omega\!\,, and utilizing the above orthogonality relationships. For the case of orthonormalized harmonics, this gives

f_\ell^m=\int_{\Omega} f(\theta,\varphi)\, Y_\ell^{m*}(\theta,\varphi)d\Omega = \int_0^{2\pi}d\varphi\int_0^{\pi}d\theta\sin\theta f(\theta,\varphi)Y_\ell^{m*} (\theta,\varphi).

An alternative set of spherical harmonics for real functions may be obtained by taking the set

Y_{\ell m} = \begin{cases} Y_\ell^0 \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\quad\mbox{  if } m=0\\ {1\over\sqrt2}\left(Y_\ell^m+(-1)^m \, Y_\ell^{-m}\right) = \sqrt{2} N_{(l,m)} P_\ell^m(\cos \theta) \cos m\varphi  \qquad\quad\quad \mbox{if } m>0 \\ {1\over i\sqrt2}\left(Y_\ell^{|m|}-(-1)^{|m|}\, Y_\ell^{-|m|}\right) = \sqrt{2} N_{(l,|m|)} P_\ell^{|m|}(\cos \theta) \sin |m|\varphi  \quad\mbox{  if } m<0. \end{cases}

where N(l,m) denotes the normalization constant as a function of l and m. These functions have the same normalization properties as the complex ones above. In this notation, a real square-integrable function can be expressed as an infinite sum of real spherical harmonics as

f(\theta, \varphi) = \sum_{\ell=0}^\infty \sum_{m=-\ell}^\ell f_{lm} \, Y_{lm}(\theta, \varphi).

[edit] Spectrum Analysis

The total power of a function f is defined in the signal processing literature as the integral of the function squared, divided by the area it spans. Using the orthonormality properties of the real unit-power spherical harmonic functions, it is straightforward to verify that the total power of a function defined on the unit sphere is related to its spectral coefficients by a generalization of Parseval's theorem:

\frac{1}{4 \, \pi} \int_\Omega  f(\Omega)^2\, d\Omega = \sum_{l=0}^\infty S_{f\!f}(l),

where

S_{f\!f}(l) = \sum_{m=-l}^l  f_{lm}^2

is defined as the angular power spectrum. In a similar manner, one can define the cross-power of two functions as

\frac{1}{4 \, \pi} \int_\Omega  f(\Omega) \, g(\Omega) \, d\Omega = \sum_{l=0}^\infty S_{fg}(l),

where

S_{fg}(l) = \sum_{m=-l}^l  f_{lm} g_{lm}

is defined as the cross-power spectrum. If the functions f and g have a zero mean (i.e., the spectral coefficients f00 and g00 are zero), then S_{f\!f}(l) and Sfg(l) represent the contributions to the function's variance and covariance for degree \ell, respectively. It is common that the (cross-)power spectrum is well approximated by a power law of the form

S_{f\!f}(l) = C \, \ell^{\beta}.

When β = 0, the spectrum is "white" as each degree possesses equal power. When β < 0, the spectrum is termed "red" as there is more power at the low degrees with long wavelengths than higher degrees. Finally, when β > 0, the spectrum is termed "blue".

[edit] Addition theorem

A mathematical result of considerable interest and use is called the addition theorem for spherical harmonics. Two vectors r and r', with spherical coordinates (r,\theta,\varphi) and (r ',\theta ',\varphi '),respectively, have an angle γ between them given by

\cos\gamma=\cos\theta\cos\theta'+\sin\theta\sin\theta'\cos(\varphi-\varphi').

The addition theorem expresses a Legendre polynomial of order l in the angle γ in terms of products of two spherical harmonics with angular coordinates (\theta,\varphi) and (\theta',\varphi'):

P_l( \cos \gamma ) = \frac{4\pi}{2l+1}\sum_{m=-l}^l Y_{lm}^*(\theta',\phi') \, Y_{lm}(\theta,\varphi).

This expression is valid for both real and complex harmonics. However, it should be emphasized that the quoted form above is valid only for the orthonormalized spherical harmonics. For unit power harmonics it is only necessary to remove the factor of .

[edit] Visualization of the spherical harmonics

Schematic representation of Ylm on the unit sphere. Ylm is equal to 0 along m great circles passing through the poles, and along l-m circles of equal latitude. The function changes sign each time it crosses one of these lines.
Schematic representation of Ylm on the unit sphere. Ylm is equal to 0 along m great circles passing through the poles, and along l-m circles of equal latitude. The function changes sign each time it crosses one of these lines.

The spherical harmonics are easily visualized by counting the number of zero crossings they possess in both the latitudinal and longitudinal directions. For the latitudinal direction, the associated Legendre functions possess l − | m | zeros, whereas for the longitudinal direction, the trigonomentric sin and cos functions possess 2 | m | zeros.

When the spherical harmonic order m is zero, the spherical harmonic functions do not depend upon longitude, and are referred to as zonal. When l = | m | , there are no zero crossings in latitude, and the functions are referred to as sectoral. For the other cases, the functions checker the sphere, and they are referred to as tesseral.

[edit] First few spherical harmonics

Analytic expressions for the first few orthonormalized spherical harmonics that use the Condon-Shortley phase convention:

Y_{0}^{0}(\theta,\varphi)={1\over 2}\sqrt{1\over \pi}
Y_{1}^{-1}(\theta,\varphi)={1\over 2}\sqrt{3\over 2\pi} \, \sin\theta \, e^{-i\varphi}
Y_{1}^{0}(\theta,\varphi)={1\over 2}\sqrt{3\over \pi}\, \cos\theta
Y_{1}^{1}(\theta,\varphi)={-1\over 2}\sqrt{3\over 2\pi}\, \sin\theta\, e^{i\varphi}
Y_{2}^{-2}(\theta,\varphi)={1\over 4}\sqrt{15\over 2\pi} \, \sin^{2}\theta \, e^{-2i\varphi}
Y_{2}^{-1}(\theta,\varphi)={1\over 2}\sqrt{15\over 2\pi}\, \sin\theta\, \cos\theta\, e^{-i\varphi}
Y_{2}^{0}(\theta,\varphi)={1\over 4}\sqrt{5\over \pi}\, (3\cos^{2}\theta-1)
Y_{2}^{1}(\theta,\varphi)={-1\over 2}\sqrt{15\over 2\pi}\, \sin\theta\,\cos\theta\, e^{i\varphi}
Y_{2}^{2}(\theta,\varphi)={1\over 4}\sqrt{15\over 2\pi}\, \sin^{2}\theta \, e^{2i\varphi}
Y_{3}^{0}(\theta,\varphi)={1\over 4}\sqrt{7\over \pi}\, (5\cos^{3}\theta-3\cos\theta)
More spherical harmonics up to Y10

[edit] Generalizations

The spherical harmonics map can be seen as representations of the symmetry group of rotations around a point (SO(3)) and its double-cover SU(2). As such they capture the symmetry of the two-dimensional sphere (or two-sphere). Each set of spherical harmonics with a given value for the l-parameter map onto a different irreducible representation of SO(3).

In addition, the two-sphere is equivalent to the Riemann sphere. The complete set of symmetries of the Riemann sphere are described by the Mobius transformation group PSL(2,C), which is isomorphic as a real Lie group to the Lorentz group. The analog of the spherical harmonics for the Lorentz group are given by the hypergeometric series; indeed, the spherical harmonics can be re-expressed in terms of the hypergeometric series, as SO(3) is a subgroup of PSL(2,C).

More generally, hypergeometric series can be generalized to describe the symmetries of any symmetric space; in particular, hypergeometric series can be developed for any Lie group[1][2][3][4]

[edit] See also

[edit] References

Cited references

  1. ^ N. Vilenkin, Special Functions and the Theory of Group Representations, Am. Math. Soc. Transl., vol. 22, (1968).
  2. ^ J. D. Talman, Special Functions, A Group Theoretic Approach, (based on lectures by E.P. Wigner), W. A. Benjamin, New York (1968).
  3. ^ W. Miller, Symmetry and Separation of Variables, Addison-Wesley, Reading (1977).
  4. ^ A. Wawrzyńczyk, Group Representations and Special Functions, Polish Scientific Publishers. Warszawa (1984).

General references

  • A.R. Edmonds, Angular Momentum in Quantum Mechanics, (1957) Princeton University Press, ISBN 0-691-07912-9.
  • E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, (1970) Cambridge at the University Press, ISBN 0-521-09209-4, See chapter 3.
  • J.D. Jackson, Classical Electrodynamics, ISBN 0-471-30932-X
  • Albert Messiah, Quantum Mechanics, volume II. (2000) Dover. ISBN 0-486-40924-4.
  • D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii Quantum Theory of Angular Momentum,(1988) World Scientific Publishing Co., Singapore, ISBN 9971-5-0107-4

Web resources

[edit] Software

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu