Плазма (физика)
Из пројекта Википедија
- Ако тражите чланак о кондиторском производу, погледајте чланак Плазма кекс.
У физици, хемији и физичкој хемији плазма је јонизован гас који се због јединствених особина сматра посебним агрегатним стањем материје уз чврсто, течно и гасовито стање. Јонизован значи да се бар један електрон одвојио од матичног атома или молекула преводећи га у позитиван јон. Слободна наелектрисања чине плазму електрично проводљивом због чега она снажно осећа утицај електромагнетног поља.
Ово четврто агрегатно стање прво је идентификовао Крукс (Sir William Crookes) 1879. године у цеви за пражњење (Круксовој цеви). [1]. Природу катодних зрака у Круксовој цеви детаљније је проучио Џ. Џ. Томпсон (Sir J.J. Thomson) 1897. године.[2]. Име "плазма" увео је Лангмир 1928. године. [3], наводно што га је подсетила на крвну плазму. [4]. Лангмир је написао:
- "Осим у близини електрода, где постоје слојеви са врло мало електрона јонизовани гас садржи јоне и електроне у отприлике истом броју тако да је укупно резултујуће просторно наелетрисање врло мало. Користићемо назив плазма да опишемо то подручје са уједначеним бројем јона и електрона."[3]
Плазма обично има облик неутралног облака или наелектрисаног јонског млаза али може исто да садржи зрнца прашине и наночестица када се назива 'прашњава плазма'.[5] Настаје загревањем и јонизацијом гаса када долази од одвајања електрона од атома а настала наелектрисања се слободно крећу.
Садржај |
[уреди] Уобичајене плазме
Плазме су најраспрострањенији облик постојања материје у Свемиру. Постоје процене да је 99% видљивог Свемира у облику плазме.[6].
С обзиром да је простор међу звездама испуњен плазмом, мада врло ретком (видети међузвездана средина и међугалактички простор), у основи цела запремина свемира је у облику плазме (видети астрофизичка плазма). У сунчевом систему, (планета) Јупитер највише доприноси не-плазми, само око 0,1% масе и 10−15% запремине унутар орбите Плутона. Познати плазма физичар Hannes Alfvén је приметио да се због сопоственог наелетрисања чак и мале честице космичке прашине понашају као јони те тако колективно образују свемирску плазму.
Уобичајени облици плазме | ||
|
|
|
[уреди] Особине и параметри плазме
Особине плазме веома зависе од средње вредности њених параметара од којих су најважнији степен јонизације, температура, густина и магнетна индукција у подручју плазме.
[уреди] Дефиниција плазме
Although a plasma is loosely described as an electrically neutral medium of positive and negative particles, a more rigorous definition requires three criteria to be satisfied:
- The plasma approximation: Charged particles must be close enough together that each particle influences many nearby charged particles, rather than just interacting with the closest particle (these collective effects are a distinguishing feature of a plasma). The plasma approximation is valid when the number of electrons within the sphere of influence (called the Debye sphere whose radius is the Debye (screening) length) of a particular particle is large. The average number of particles in the Debye sphere is given by the plasma parameter, Λ.
- Bulk interactions: The Debye screening length (defined above) is short compared to the physical size of the plasma. This criterion means that interactions in the bulk of the plasma are more important than those at its edges, where boundary effects may take place.
- Plasma frequency: The electron plasma frequency (measuring plasma oscillations of the electrons) is large compared to the electron-neutral collision frequency (measuring frequency of collisions between electrons and neutral particles). When this condition is valid, plasmas act to shield charges very rapidly (quasineutrality is another defining property of plasmas).
[уреди] Опсег параметара плазме
Plasma parameters can take on values varying by many orders of magnitude, but the properties of plasmas with apparently disparate parameters may be very similar (see plasma scaling). The following chart considers only conventional atomic plasmas and not exotic phenomena like quark gluon plasmas:
Типични опсези параметара плазме: редови величине (РВ) | ||
Особина | Земаљске плазме | Свемирске плазме |
Величина у метрима |
10−6 m (лаб. плазме) to 102 m (муња) (~8 РВ) |
10−6 m (слој на летелици) to 1025 m (међугалактичка небула) (~31 РВ) |
Време живота у секунди |
10−12 s (ласером произведена плазма) to 107 s (флуоресцентно светло) (~19 РВ) |
101 s (соларне ерупције) to 1017 s (међугалактичка плазма) (~17 РВ) |
Густина у честицама по кубном метру |
107 m-3 to 1032 m-3 (inertial confinement plasma) |
100 (i.e., 1) m-3 (међугалактичка средина) to 1030 m-3 (звездано језгро) |
Температура у келвинима |
~0 K (кристална не-неутрална плазма[9]) до 108 K (магнетна фузиона плазма) |
102 K (поларна светлост) to 107 K (сунчево језгро) |
Магнетна поља у теслама |
10−4 T (лаб. плазма) to 103 T (пулсна плазма) |
10−12 T (интергалактичка средина) to 1011 T (у близини неутронске звезде) |
[уреди] Степен јонизације
For plasma to exist, ionization is necessary. The word "plasma density" by itself usually refers to the electron density, that is, the number of free electrons per unit volume. The degree of ionization of a plasma is the proportion of atoms which have lost (or gained) electrons, and is controlled mostly by the temperature. Even a partially ionized gas in which as little as 1% of the particles are ionized can have the characteristics of a plasma (i.e. respond to magnetic fields and be highly electrically conductive). The degree of ionization, α is defined as α = ni/(ni + na) where ni is the number density of ions and na is the number density of neutral atoms. The electron density is related to this by the average charge state <Z> of the ions through ne=<Z> ni where ne is the number density of electrons.
[уреди] Температуре
Plasma temperature is commonly measured in kelvins or electronvolts, and is (roughly speaking) a measure of the thermal kinetic energy per particle. In most cases the electrons are close enough to thermal equilibrium that their temperature is relatively well-defined, even when there is a significant deviation from a Maxwellian energy distribution function, for example due to UV radiation, energetic particles, or strong electric fields. Because of the large difference in mass, the electrons come to thermodynamic equilibrium among themselves much faster than they come into equilibrium with the ions or neutral atoms. For this reason the ion temperature may be very different from (usually lower than) the electron temperature. This is especially common in weakly ionized technological plasmas, where the ions are often near the ambient temperature.
Based on the relative temperatures of the electrons, ions and neutrals, plasmas are classified as thermal or non-thermal. Thermal plasmas have electrons and the heavy particles at the same temperature i.e. they are in thermal equilibrium with each other. Non thermal plasmas on the other hand have the ions and neutrals at a much lower temperature (normally room temperature) whereas electrons are much "hotter".
Temperature controls the degree of plasma ionization. In particular, plasma ionization is determined by the electron temperature relative to the ionization energy (and more weakly by the density) in accordance with the Saha equation. A plasma is sometimes referred to as being hot if it is nearly fully ionized, or cold if only a small fraction (for example 1%) of the gas molecules are ionized (but other definitions of the terms hot plasma and cold plasma are common). Even in a "cold" plasma the electron temperature is still typically several thousand degrees Celsius. Plasmas utilized in plasma technology ("technological plasmas") are usually cold in this sense.
[уреди] Потенцијали
Since plasmas are very good conductors, electric potentials play an important role. The potential as it exists on average in the space between charged particles, independent of the question of how it can be measured, is called the plasma potential or the space potential. If an electrode is inserted into a plasma, its potential will generally lie considerably below the plasma potential due to the development of a Debye sheath. Due to the good electrical conductivity, the electric fields in plasmas tend to be very small. This results in the important concept of quasineutrality, which says that it is a very good approximation to assume that the density of negative charges is equal to the density of positive charges over large volumes of the plasma (), but on the scale of the Debye length there can be charge imbalance. In the special case that double layers are formed, the charge separation can extend some tens of Debye lengths.
The magnitude of the potentials and electric fields must be determined by means other than simply finding the net charge density. A common example is to assume that the electrons satisfy the Boltzmann relation:
- .
Differentiating this relation provides a means to calculate the electric field from the density:
- .
It is, of course, possible to produce a plasma that is not quasineutral. An electron beam, for example, has only negative charges. The density of a non-neutral plasma must generally be very low, or it must be very small, otherwise it will be dissipated by the repulsive electrostatic force.
In astrophysical plasmas, Debye screening prevents electric fields from directly affecting the plasma over large distances (ie. greater than the Debye length). But the existence of charged particles causes the plasma to generate and be affected by magnetic fields. This can and does cause extremely complex behavior, such as the generation of plasma double layers, an object that separates charge over a few tens of Debye lengths. The dynamics of plasmas interacting with external and self-generated magnetic fields are studied in the academic discipline of magnetohydrodynamics.
[уреди] Магнетизација
A plasma in which the magnetic field is strong enough to influence the motion of the charged particles is said to be magnetized. A common quantitative criterion is that a particle on average completes at least one gyration around the magnetic field before making a collision (ie. ωce / νcoll > 1 where ωce is the "electron gyrofrequency" and νcoll is the "electron collision rate"). It is often the case that the electrons are magnetized while the ions are not. Magnetized plasmas are anisotropic, meaning that their properties in the direction parallel to the magnetic field are different from those perpendicular to it. While electric fields in plasmas are usually small due to the high conductivity, the electric field associated with a plasma moving in a magnetic field is given by E = -v x B (where E is the electric field, v is the velocity, and B is the magnetic field), and is not affected by Debye shielding.[11]
[уреди] Поређење плазменог и гасног стања
Plasma is often called the fourth state of matter. It is distinct from other lower-energy states of matter; most commonly solid, liquid, and gas, although it is closely related to the gas phase in that it also has no definite form or volume. Physicists consider a plasma to be more than a gas because of a number of distinct properties including the following:
[уреди] Сложене појаве у плазми
Although the underlying equations governing plasmas are relatively simple, plasma behaviour is extraordinarily varied and subtle: the emergence of unexpected behaviour from a simple model is a typical feature of a complex system. Such systems lie in some sense on the boundary between ordered and disordered behaviour, and cannot typically be described either by simple, smooth, mathematical functions, or by pure randomness. The spontaneous formation of interesting spatial features on a wide range of length scales is one manifestation of plasma complexity. The features are interesting, for example, because they are very sharp, spatially intermittent (the distance between features is much larger than the features themselves), or have a fractal form. Many of these features were first studied in the laboratory, and have subsequently been recognised throughout the universe. Examples of complexity and complex structures in plasmas include:
[уреди] Филаментација
The striations or "stringy" things,[12] seen in many plasmas, like the plasma ball (image above), the aurora,[13] lightning,[14] electric arcs, solar flares,[15] and supernova remnants[16] They are sometimes associated with larger current densities, and are also called magnetic ropes.[17] (See also Plasma pinch)
[уреди] Шок или двоструки слојеви
Narrow sheets with sharp gradients, such as shocks or double layers which support rapid changes in plasma properties. Double layers involve localised charge separation, which causes a large potential difference across the layer, but does not generate an electric field outside the layer. Double layers separate adjacent plasma regions with different physical characteristics, and are often found in current carrying plasmas. They accelerate both ions and electrons.
[уреди] Електрична поља и кола
Quasineutrality of a plasma requires that plasma currents close on themselves in electric circuits. Such circuits follow Kirchhoff's circuit laws, and possess a resistance and inductance. These circuits must generally be treated as a strongly coupled system, with the behaviour in each plasma region dependent on the entire circuit. It is this strong coupling between system elements, together with nonlinearity, which may lead to complex behaviour. Electrical circuits in plasmas store inductive (magnetic) energy, and should the circuit be disrupted, for example, by a plasma instability, the inductive energy will be released as plasma heating and acceleration. This is a common explanation for the heating which takes place in the solar corona. Electric currents, and in particular, magnetic-field-aligned electric currents (which are sometimes generically referred to as Birkeland currents), are also observed in the Earth's aurora, and in plasma filaments.
[уреди] Целуларна структура
Narrow sheets with sharp gradients may separate regions with different properties such as magnetization, density, and temperature, resulting in cell-like regions. Examples include the magnetosphere, heliosphere, and heliospheric current sheet. Hannes Alfvén wrote: ""From the cosmological point of view, the most important new space research discovery is probably the cellular structure of space. As has been seen, in every region of space which is accessible to in situ measurements, there are a number of `cell walls', sheets of electric currents, which divide space into compartments with different magnetization, temperature, density, etc ."[20]
[уреди] Критична јонизациона брзина
The Critical ionization velocity is the relative velocity between an (magnetized) ionized plasma and a neutral gas above which a runaway ionization process takes place. The critical ionization process is a quite general mechanism for the conversion of the kinetic energy of a rapidly streaming gas into ionization and plasma thermal energy. Critical phemonema in general are typical of complex systems, and may lead to sharp spatial or temporal features.
[уреди] Ултрахладна плазма
It is possible to create ultracold plasmas, by using lasers to trap and cool neutral atoms to temperatures of 1 mK lower. Another laser then ionizes the atoms by giving each of the outermost electrons just enough energy to escape the electrical attraction of its parent ion.
The key point about ultracold plasmas is that by manipulating the atoms with lasers, the kinetic energy of the liberated electrons can be controlled. Using standard pulsed lasers, the electron energy can be made to correspond to a temperature of as low as 0.1 K, a limit set by the frequency bandwidth of the laser pulse. The ions, however, retain the millikelvin temperatures of the neutral atoms. This type of non-equilibrium ultracold plasma evolves rapidly, and many fundamental questions about its behaviour remain unanswered. Experiments conducted so far have revealed surprising dynamics and recombination behaviour that are pushing the limits of our knowledge of plasma physics.
[уреди] Не-неутрална плазма
The strength and range of the electric force and the good conductivity of plasmas usually ensure that the density of positive and negative charges in any sizeable region are equal ("quasineutrality"). A plasma that has a significant excess of charge density or that is, in the extreme case, composed of only a single species, is called a non-neutral plasma. In such a plasma, electric fields play a dominant role. Examples are charged particle beams, an electron cloud in a Penning trap, and positron plasmas.[23]
[уреди] Прашњава плазма и зрнаста плазма
A dusty plasma is one containing tiny charged particles of dust (typically found in space) that also behaves like a plasma. A plasma containing larger particles is called a grain plasma.
[уреди] Математички опис
За више информација погледајте Plasma modeling. |
To completely describe the state of a plasma, we would need to write down all the particle locations and velocities, and describe the electromagnetic field in the plasma region. However, it is generally not practical or necessary to keep track of all the particles in a plasma. Therefore, plasma physicists commonly use less detailed descriptions known as models, of which there are two main types:
[уреди] Модел флуида
Fluid models describe plasmas in terms of smoothed quantities like density and averaged velocity around each position (see Plasma parameters). One simple fluid model, magnetohydrodynamics, treats the plasma as a single fluid governed by a combination of Maxwell's Equations and the Navier Stokes Equations. A more general description is the two-fluid picture, where the ions and electrons are described separately. Fluid models are often accurate when collisionality is sufficiently high to keep the plasma velocity distribution close to a Maxwell-Boltzmann distribution. Because fluid models usually describe the plasma in terms of a single flow at a certain temperature at each spatial location, they can neither capture velocity space structures like beams or double layers nor resolve wave-particle effects.
[уреди] Кинтетички модел
Kinetic models describe the particle velocity distribution function at each point in the plasma, and therefore do not need to assume a Maxwell-Boltzmann distribution. A kinetic description is often necessary for collisionless plasmas. There are two common approaches to kinetic description of a plasma. One is based on representing the smoothed distribution function on a grid in velocity and position. The other, known as the particle-in-cell (PIC) technique, includes kinetic information by following the trajectories of a large number of individual particles. Kinetic models are generally more computationally intensive than fluid models. The Vlasov equation may be used to describe how a system of particles evolves in an electromagnetic environment.
[уреди] Поља активног истраживања
This is just a partial list of topics. A more complete and organized list can be found on the Web site for Plasma science and technology.[25]
|
|
[уреди] Белешке
- ^ Крукс је одржао предавање пред Британским удружењем за унапређење науке British Association for the Advancement of Science, у Шефилду, у петак, 22. августа 1879. [1] [2]
- ^ Обзнањено у његовом вечерњем редавању у Крањевској иснтитуцији Royal Institution у петак, 30. априла 1897., и објављено у Филозофском магазину Philosophical Magazine, 44, 293 [3]
- ^ 3,0 3,1 I. Langmuir, "Осцилације у јонизованим гасовима (Oscillations in ionized gases)," Proc. Nat. Acad. Sci. U.S., vol. 14, p. 628, 1928
- ^ G. L. Rogoff, Ed., IEEE Transactions on Plasma Science, vol. 19, p. 989, Dec. 1991. Видети извод у http://www.plasmacoalition.org/what.htm
- ^ Greg Morfill et al, Focus on Complex (Dusty) Plasmas (2003) New J. Phys. 5
- ^ D. A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics: With Space and Laboratory Applications (2005) (Page 2). Also K Scherer, H Fichtner, B Heber, "Space Weather: The Physics Behind a Slogan" (2005) (Page 138)
- ^ Plasma fountain Source, press release: Solar Wind Squeezes Some of Earth's Atmosphere into Space
- ^ After Peratt, A. L., "Advances in Numerical Modeling of Astrophysical and Space Plasmas" (1966) Astrophysics and Space Science, v. 242, Issue 1/2, p. 93-163.
- ^ See The Nonneutral Plasma Group at the University of California, San Diego
- ^ See Flashes in the Sky: Earth's Gamma-Ray Bursts Triggered by Lightning
- ^ Richard Fitzpatrick, Introduction to Plasma Physics, Magnetized plasmas
- ^ Dickel, J. R., "The Filaments in Supernova Remnants: Sheets, Strings, Ribbons, or?" (1990) Bulletin of the American Astronomical Society, Vol. 22, p.832
- ^ Grydeland, T., et al, "Interferometric observations of filamentary structures associated with plasma instability in the auroral ionosphere" (2003) Geophysical Research Letters, Volume 30, Issue 6, pp. 71-1
- ^ Moss, Gregory D., et al, "Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders" (2006) Journal of Geophysical Research, Volume 111, Issue A2, CiteID A02307
- ^ Doherty, Lowell R., "Filamentary Structure in Solar Prominences." (1965) Astrophysical Journal, vol. 141, p.251
- ^ Hubble views the Crab Nebula M1: The Crab Nebula Filaments
- ^ Zhang, Yan-An, et al, "A rope-shaped solar filament and a IIIb flare" (2002) Chinese Astronomy and Astrophysics, Volume 26, Issue 4, p. 442-450
- ^ See A Star with two North Poles
- ^ See [Artist's Conception of the Heliospheric Current Sheet http://quake.stanford.edu/~wso/gifs/HCS.html]
- ^ Hannes Alfvén, Cosmic Plasma (1981) See section VI.13.1. Cellular Structure of Space.
- ^ See Saturn: Rings
- ^ Horanyi, M. et al, Dusty Plasma Effects in Saturn's Rings (2004) American Geophysical Union, Fall Meeting 2004, abstract #P52A-07. See also Blikoh, P. V. et al pokes in the Saturn's Ring as Solutions in Dusty Plasma (1994) Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory. Edited by Hiroshi Kikuchi. ISBN 0-306-44839-4. Published by Plenum Press, New York, 1994, p.29
- ^ R. G. Greaves, M. D. Tinkle, and C. M. Surko, "Creation and uses of positron plasmas", Physics of Plasmas -- May 1994 -- Volume 1, Issue 5, pp. 1439-1446
- ^ See Evolution of the Solar System, 1976)
- ^ Web site for Plasma science and technology
[уреди] Видети још
- Магнетохидродинамика
- en:IEEE Nuclear and Plasma Sciences Society
[уреди] Спољашње везе
- Plasmas: the Fourth State of Matter
- Plasma Science and Technology
- Plasma on the Internet comprehensive list of plasma related links.
- Introduction to Plasma Physics: Graduate course given by Richard Fitzpatrick | M.I.T. Introduction by I.H.Hutchinson
- An overview of plasma links and applications
- NRL Plasma Formulary online (or an html version)
- Plasma Coalition page
- Plasma Material Interaction
- How to make a glowing ball of plasma in your microwave with a grape | More (Video)
- How to make plasma in your microwave with only one match (video)
- U.S. Dept of Agriculture research project "Decontamination of Fresh Produce with Cold Plasma"
- CNRS LAEPT "Electric Arc Thermal Plasmas
[уреди] Литература
- ^ Крукс је одржао предавање пред Британским удружењем за унапређење науке British Association for the Advancement of Science, у Шефилду, у петак, 22. августа 1879. [4] [5]
- ^ Обзнањено у његовом вечерњем редавању у Крањевској иснтитуцији Royal Institution у петак, 30. априла 1897., и објављено у Филозофском магазину Philosophical Magazine, 44, 293 [6]
- ^ 3,0 3,1 I. Langmuir, "Осцилације у јонизованим гасовима (Oscillations in ionized gases)," Proc. Nat. Acad. Sci. U.S., vol. 14, p. 628, 1928
- ^ G. L. Rogoff, Ed., IEEE Transactions on Plasma Science, vol. 19, p. 989, Dec. 1991. Видети извод у http://www.plasmacoalition.org/what.htm
- ^ Greg Morfill et al, Focus on Complex (Dusty) Plasmas (2003) New J. Phys. 5
- ^ D. A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics: With Space and Laboratory Applications (2005) (Page 2). Also K Scherer, H Fichtner, B Heber, "Space Weather: The Physics Behind a Slogan" (2005) (Page 138)
- ^ Plasma fountain Source, press release: Solar Wind Squeezes Some of Earth's Atmosphere into Space
- ^ After Peratt, A. L., "Advances in Numerical Modeling of Astrophysical and Space Plasmas" (1966) Astrophysics and Space Science, v. 242, Issue 1/2, p. 93-163.
- ^ See The Nonneutral Plasma Group at the University of California, San Diego
- ^ See Flashes in the Sky: Earth's Gamma-Ray Bursts Triggered by Lightning
- ^ Richard Fitzpatrick, Introduction to Plasma Physics, Magnetized plasmas
- ^ Dickel, J. R., "The Filaments in Supernova Remnants: Sheets, Strings, Ribbons, or?" (1990) Bulletin of the American Astronomical Society, Vol. 22, p.832
- ^ Grydeland, T., et al, "Interferometric observations of filamentary structures associated with plasma instability in the auroral ionosphere" (2003) Geophysical Research Letters, Volume 30, Issue 6, pp. 71-1
- ^ Moss, Gregory D., et al, "Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders" (2006) Journal of Geophysical Research, Volume 111, Issue A2, CiteID A02307
- ^ Doherty, Lowell R., "Filamentary Structure in Solar Prominences." (1965) Astrophysical Journal, vol. 141, p.251
- ^ Hubble views the Crab Nebula M1: The Crab Nebula Filaments
- ^ Zhang, Yan-An, et al, "A rope-shaped solar filament and a IIIb flare" (2002) Chinese Astronomy and Astrophysics, Volume 26, Issue 4, p. 442-450
- ^ See A Star with two North Poles
- ^ See [Artist's Conception of the Heliospheric Current Sheet http://quake.stanford.edu/~wso/gifs/HCS.html]
- ^ Hannes Alfvén, Cosmic Plasma (1981) See section VI.13.1. Cellular Structure of Space.
- ^ See Saturn: Rings
- ^ Horanyi, M. et al, Dusty Plasma Effects in Saturn's Rings (2004) American Geophysical Union, Fall Meeting 2004, abstract #P52A-07. See also Blikoh, P. V. et al pokes in the Saturn's Ring as Solutions in Dusty Plasma (1994) Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory. Edited by Hiroshi Kikuchi. ISBN 0-306-44839-4. Published by Plenum Press, New York, 1994, p.29
- ^ R. G. Greaves, M. D. Tinkle, and C. M. Surko, "Creation and uses of positron plasmas", Physics of Plasmas -- May 1994 -- Volume 1, Issue 5, pp. 1439-1446
- ^ See Evolution of the Solar System, 1976)
- ^ Web site for Plasma science and technology
Овај незавршени чланак Плазма (физика), везан је за физику. Користећи правила Википедије, допринесите допунивши га. |