Öbek (Matematik)
Vikipedi, özgür ansiklopedi
Genellikle grup olarak bilinen bu matematiksel yapı, soyut cebirin en temel yapısıdır. Öbek, öncelikle bir kümedir, öğeleri boş olmayan bir küme ve üzerine tanımlı bir ikili işlemi olan bir kümedir. Öbek kuramı, bu işlemin özelliklerine göre öbekleri inceler. Soyut cebirin halka, cisim, modül gibi diğer yapılarının temelini oluşturur.
[değiştir] Tanım
Eğer Boşkümeden farklı ve üzerinde bir tane ikili işlem tanımlanmış bir G kümesi
- Bileşme: Her a, b, c G için a(bc)=(ab)c.
belitini sağlıyorsa bir yarı öbektir (yarıgrup). Eğer bir yarı öbek,
- (iki yönlü) Birim öğe: Her a G için öyle bir e G vardır ki ea=ae=a.
belitini sağlıyorsa bu kümeye birlik (monoid) denir. Eğer bir birlik,
- Tersinir öğe: Her a G için öyle bir G vardır ki a − 1a = aa − 1 = e.
belitini sağlıyorsa kümeye öbek (grup) adı verilir.
Eğer bir öbek,
- Değişme: Her a, b G için ab=ba.
belitini sağlıyorsa değişmeli öbek (değişmeli grup) ya da Abel'in anısına Abelyen öbek (abelyen grup) olarak adlandırılır. İşlemi vurgulamak için (G, ) gösterimi kullanılır (ki burada "" işlemin simgesidir).
Öbek kuramı (grup kuramı), demin tanımladığımız öbek (grup) yapısıyla ilgilenir. Ödeği tanımlarken yaptığımız tanımlar ise çoğunlukla bazı kesin teoremleri en genel halleriyle ifade etmek için kullanılır.
Bir öbeğin mertebesi |G| ile gösterilen kardinal sayıdır (yani kümenin öğe sayısıdır). |G| sonluysa (ya da sonsuzsa), G ye sonlu öbek (ya da sonsuz öbek) denir.
[değiştir] Bazı Öbek Örnekleri
- Toplama işlemiyle tam sayılar kümesi (Z, + ), değişmeli bir öbektir.
- Çarpma işlemiyle sıfırsız gerçel sayılar kümesi , değişmeli bir öbektir.
- Dörtlük sayılar çarpma işlemiyle değişmesiz (değişmeli olmayan) bir öbektir.
[değiştir] Kaynakça
- Thomas W. Hungerford, Algebra, Springer-Verlag, Chapter I, 1974.
- Nathan Jacobson, Lectures in Abstract Algebra: I. Besic Concepts, Springer-Verlag, Chapter I, 1951.
- Serge Lang, Algebra, Addison-Wesley, 3. baskı, 1993.
- Abdullah Harmancı, Cebir, Hacettepe Üniversitesi FF, 2 cilt, 1987.