Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Legeme (algebra) - Wikipedia, den frie encyklopædi

Legeme (algebra)

Fra Wikipedia, den frie encyklopædi

Indholdsfortegnelse

[redigér] Introduktion

Et legeme er i abstrakt algebra en kommutativ ring, der opfylder 6 bestemte aksiomer.

Ud fra disse 6 aksiomer kan man udlede alle de normale regneregler, såsom at man dividerer med en brøk ved at gange med den omvendte eller (x + y)2 = x2 + 2xy + y2

I et legeme er der kun fastsat 2 regneoperatorer, plus og gange. Alle de andre kan uddrives af disse.

[redigér] Aksiomerne

Vi antager at vi har et legeme M.
M skal så opfylde følgende aksiomer:

[redigér] Aksiom 1: Stabilitet

M er stabil overfor addition og multiplikation.

Dette vil sige, at for et hvilket som helst element i M, kan det adderes eller multipliceres med et andet hvilket som helst element i M, og dette produkt vil eksistere i M:

∀x,y ∈ M: x + y ∈ M

∀x,y ∈ M: x × y ∈ M

[redigér] Aksiom 2: Kommutativitet

Addition og multiplikation er kommutative operatorer.

Dette vil sige, at faktorernes rækkefølge er ligegyldig.

∀x,y ∈ M: x + y = y + x

∀x,y ∈ M: x × y = y × x

[redigér] Aksiom 3: Associativitet

Addition og multiplikation er associative operatorer.

Dette vil sige, at man kan definere en hvilken som helst sammenhæng mellem 3 eller flere tal bundet sammen af enten plus eller gange, uden at dette vil ændre resultatet.

∀x,y,z ∈ M: (x + y) + z = x + (y + z)

∀x,y,z ∈ M: (x × y) × z = x × (y × z)

[redigér] Aksiom 4: Distributivitet

Multiplikation er distributiv i forhold til addition.

Dette vil sige, at man kan "gange ind i parenteser" og vice versa.

∀x,y,z ∈ M: x × (y + z) = (x × y) + (x × z)

[redigér] Aksiom 5: Nulelement og ételement

M indeholder et nulelement n, som er neutralt overfor addition, og et ételement e, som er neutralt overfor multiplikation. Disse skal være forskellige.

Dette vil sige, at 0 og 1 skal eksistere i M. Dog siger vi ikke, at der kun må være et af hvert. Dette er implicit i aksiomet. Dette vil vi bevise senere.

∀x ∈ M: x + n = x

∀x ∈ M: x × e = x e ≠ n

[redigér] Aksiom 6: Modsatte og reciprokke tal

Ethvert element i M har et modsat element i M, og ethvert element i M, som ikke er et nulelement, har et reciprokt element i M.

∀x ∈ M ∃y ∈ M: x + y = n

∀x ∈ M \ {0} ∃y ∈ M: x × y = e

[redigér] Udledninger

Man kan blandt andet, som tidligere nævnt, udlede at der kun kan eksistere ét nulelement og ét ételement.

Lad n1 være det ene nulelement, og n2 være det andet. Vi kan så se, at disse to må være ens:

n1 =
n1 + n2 =
n2 + n1 =
n2

Dette gøres ved at bruge reglen om, at n er neutral overfor addition. Linje 3 gør brug af reglen om kommutativitet. Noget lignende kan gøres med ételementet.

Endvidere kan bl.a. bevise at (x + y)2 = x2 + 2xy + y2 ved at sige

(x + y)2 =
(x + y) × (x + y) =
(x × (x + y)) + (y × (x + y)) =
(x × x) + (x × y) + (y × x) + (y × y) =
xx + xy + yx + yy =
x2 + xy + xy + y2 =
x2 + 2xy + y2


Denne artikel om matematik er kun påbegyndt. Hvis du ved mere om emnet, kan du hjælpe Wikipedia ved at udvide den.


[redigér] Se også

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu