Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Gezeitenkraft - Wikipedia

Gezeitenkraft

aus Wikipedia, der freien Enzyklopädie

Gezeitenkräfte sind Kräfte, die auf ausgedehnte Himmelskörper wirken, die sich gegenseitig umkreisen. Sie entstehen durch das Zusammenspiel von Gravitationskraft der Massen und der Zentrifugalbeschleunigung. Entlang der Verbindungslinie zwischen den Schwerpunkten verursachen sie eine Zunahme des Durchmessers der Himmelskörper, senkrecht dazu eine gerine Kompression.

Auf der Erde sind die Gezeitenkräfte, die Mond und Sonne auf die Erde ausüben, die Ursache der Gezeiten (siehe auch: Erdgezeiten).

Inhaltsverzeichnis

[Bearbeiten] Physikalische Beschreibung

Die Gezeitenbeschleunigung, die ein Körper M auf den im Abstand r umkreisten Himmelkörper Mg mit dem Durchmesser R verursacht, ist die Differenz der Gravitationsbeschleunigung und der Zentrifugalbeschleunigung. Sie beträgt ungefähr:

a_g \cong 2\frac{G\mathcal{M}}{r^3} R.

Denn:
Die Gravitationbeschleunigung eines Körpers aG in einem äußeren Gravitationsfeld der Masse \mathcal{M} ist gegeben durch

a_G = \frac{G\mathcal{M}}{r^2},

mit der Gravitationskonstante G und dem Abstand r.

Auf ein Massenelement in einem Abstand R vom Schwerpunkt, der Einfachheit halber auf der Verbindungslinie zwischen Körperschwerpunkt und der Masse, die das Gravitationsfeld erzeugt, wirkt die Beschleunigung

a_G = \frac{G\mathcal{M}}{(r\pm R)^2}.

Dabei ist r+R der Punkt auf der der Masse abgewandten, r-R auf der zugewandten Seite.

Da die Bewegung dieses Massenelements jedoch durch die Bewegung des Körperschwerpunktes festgelegt ist, erfährt es eine Effektivbeschleunigung, die Gezeitenbeschleunigung ag, die vom Körperschwerpunkt wegweist:

a_g = \frac{G\mathcal{M}}{r^2} - \frac{G\mathcal{M}}{(r+R)^2} \cong 2\frac{G\mathcal{M}}{r^3} R.

Die Näherung folgt aus der Reihenentwicklung und Abbruch nach dem linearen Glied:

(1\pm x)^{-2} = 1 \mp 2x \pm 3x^2 ...

Die Größe der Gezeitenkraft hängt ab von der Position auf der Kugeloberfläche relativ zur Verbindungsachse der beiden Körper:

ag= G/g*(cos(2*θ) + 1/3)

θ ist der zugehörige Winkel mit dem Körpermittelpunkt als Scheitel, g die Schwerebeschleunigung des Himmelskörpers.

Senkrecht zur Verbindungslinie der Körper ist die Gezeitenkraft halb so groß. Sie zeigt dort zum Körpermittelpunkt, sie verursacht eine Kompression. Im Winkel von 45° verläuft sie tangential zur Oberfläche und ruft eine geringe Verschiebung aus der Lotrechen hervor.


Die Gezeitenkraft skaliert mit der dritten Potenz des Abstandes vom Gravitationszentrum und fällt schneller ab als die Gravitationskraft, die quadratisch skaliert. Dies führt z. B. dazu, dass wegen der Abstände die Gezeitenkräfte des Mondes auf die Erde größer sind als die der Sonne, obwohl die Sonne eine größere Gravitationskraft auf die Erde ausübt.

Andererseits nimmt die Gezeitenkraft proportional mit der Ausdehnung des Körpers, auf den sie einwirkt, zu. Das ist zum Beispiel wichtig bei der Einschätzung der Gezeitenwirkung auf die äußerste Atmosphäre eines Planeten, die sich bis weit in den Raum erstrecken kann. In manchen Näherungsrechnungen werden auch starre Modelle ausgedehnter Systeme angenommen, dann wirkt die Gezeitenkraft auf das ganze ausgedehnte Modell. Beispiel: Nimmt man Erde - Mond als starren Kreisel unter dem Einfluss der Sonne an, dann wirkt die Gezeitenkraft der Sonne auf ein System mit Radius 380.000 km ein.

[Bearbeiten] Gezeitenkraft

 Entstehung der Gezeitenkräfte: Die roten Pfeile im oberen Bild zeigen die Gravitationskräfte, die durch einen massereichen Körper, der rechts außerhalb des Bildes steht, auf den kugelförmigen Himmelskörper wirken. Die Pfeile im unteren Bild zeigen die Differenz zur Gravitationskraft, die im Schwerpunkt des Körpers wirkt: Das sind die Gezeitenkräfte.
Entstehung der Gezeitenkräfte: Die roten Pfeile im oberen Bild zeigen die Gravitationskräfte, die durch einen massereichen Körper, der rechts außerhalb des Bildes steht, auf den kugelförmigen Himmelskörper wirken. Die Pfeile im unteren Bild zeigen die Differenz zur Gravitationskraft, die im Schwerpunkt des Körpers wirkt: Das sind die Gezeitenkräfte.

Eine Gezeitenkraft wird durch die Gravitationswirkung eines schweren (Himmels)körpers verursacht, und wirkt auf ein ausgedehntes Objekt in diesem Gravitationsfeld. Allerdings ist die Gezeitenwirkung deutlich geringer als die Gravitationswirkung: Die Gravitation bewirkt allgemein eine anziehende Kraft, die das Objekt beschleunigt. Die Gezeitenwirkung dagegen entsteht, wenn an verschiedenen Stellen des Objektes eine unterschiedlich starke Gravitationskraft wirkt. Sie ist also ein der direkten Gravitationswirkung nachgeordneter Effekt.

Ein starres Objekt im Gravitationsfeld bewegt sich (zumindest im Rahmen der klassischen Mechanik) als ob all seine Masse im Schwerpunkt vereint sei. Da die Gravitation mit der Entfernung abnimmt, ist die Anziehungskraft auf der Seite des Objekts, die der Gravitationsquelle näher ist, höher als auf der gegenüberliegenden Seite. Deswegen entsteht im Objekt eine Zugspannung:

Die Stärke der Gezeitenkräfte hängt von der Differenz der Gravitationskraft an beiden Seiten des Objektes ab. Offensichtlich bewirkt ein steiles Gravitationspotential, wie es in der Nähe kleiner, sehr massiver Objekte (Schwarzes Loch, Neutronenstern) auftritt, starke Gezeitenkräfte. Daneben ist die Ausdehnung des Objektes von Bedeutung: Je größer das Objekt, desto größer kann die Differenz der Gravitationskraft an Vorder- und Rückseite werden.

Exakt wird die Gezeitenkraft durch den Weyl-Tensor beschrieben; sie folgt näherungsweise einem inversen kubischen Gesetz. Diese Näherung kann durch Differenzbildung der Gravitationskraft

F_{grav} = \frac{GMm} {r^2}

(M ist die Masse des Körpers, der die Gravitation bewirkt; m ist die Masse des Objekts im Gravitationsfeld; r ist der Abstand) zwischen den nahen und fernen Punkt des Objekts motivieren:

F_{diff} = GMm (\frac{1}{r_{nah}^2} - \frac{1}{r_{fern}^2})

Im Grenzfall kleiner Abstände dr entsteht hieraus

\mathrm{d}F_{gezeit} = \frac{2\,GMm} {r^3} \mathrm{d}r

Wegen der Abhängigkeit des Abstands mit der dritten Potenz nimmt die Gezeitenkraft mit der Entfernung viel stärker ab als die Gravitationskraft.

Die Gezeitenkräfte der Sonne auf der Erde sind weniger als halb so groß wie die des Mondes, während die Gravitationskraft rund 175 Mal größer ist. Die Gezeitenkraft des Mondes ruft eine Auslenkung einer Wasseroberfläche von ca. 30cm hervor, die der Sonne von ca. 14cm (Eigenschwingungen verursachen an den Küsten deutlich höhere Tiden).

Bezogen auf die Gravitationskraft des Mondes (also MMond/r³Erde-Mond = 1) verursachen Himmelskörper folgende relativen Gezeitenkräfte und absoluten Auslenkungen auf der Erde:

Himmelskörper;      Rel. Kraft;   Auslenkung 
Mond                1             30cm
Sonne               0,45          14 cm
Mars in Opposition  0,000'002     0,5 µm
Mars in Konjunktion 0,000'000'01  3 nm
Venus in unt. Konj. 0,000'05      17 µm
Jupiter             0,000'006     2 µm

[Bearbeiten] Roche-Grenze

Ist der Abstand eines Trabanten zu seinem Zentralkörper sehr gering, so werden die Gezeitenkräfte sehr stark.

Um die Stabilität eines Körpers zu untersuchen, betrachtet man die Gezeitenkräfte im Vergleich zu den Gravitationskräften, die den Körper selbst zusammenhalten. Die Stabilitätsgrenze ist hierbei erreicht, wenn die Gezeitenkräfte größer werden als die Gravitationskräfte, wobei man zur Abschätzung den Trabanten in zwei Teilkörper unterteilt, mit jeweils der halben Trabentenmasse \mathcal{M}_t/2 in einem Abstand, der seinem Radius rt entspricht:

G \frac{\mathcal{M}_t^2}{4R_t^2} \ge cG \frac{\mathcal{MM}_t}{r^3} \cdot R_t,

mit dem Abstand r von der Zentralmasse \mathcal{M}, c ist hierbei eine Konstante von der Größenordnung 1. Mit den mittleren Dichten ρ und ρt des Zentralkörpers und des Trabanten, sowie dem Radius R des Zentralkörpers erhält man

\frac{r}{R} \ge (4c)^{1/3} \left( \frac{\rho}{\rho_t} \right)^{1/3}.

Eine genauere Rechnung ergibt

\frac{r}{R} \ge 2{,}44 \left( \frac{\rho}{\rho_t} \right)^{1/3}.

Bei einem Abstand von weniger als dem 2,44-fachen des Radius seines Zentralkörpers wird ein Trabant mit vergleichbarer Dichte durch die Gezeitenkräfte auseinander gerissen bzw. kann sich gar nicht erst bilden. Dieser Abstand wird nach Édouard Albert Roche, der diese Abschätzung erstmals durchgeführt hat, Roche-Grenze genannt.

Diese Überlegungen gelten für größere Körper, die durch ihre eigene Schwerkraft zusammengehalten werden (siehe Zwergplanet). Bei kleineren Körpern überwiegt die Stabilität durch Kohäsionskräfte. Bei künstlichen Satelliten spielt der Zusammenhalt durch die eigene Gravitation überhaupt keine Rolle.

[Bearbeiten] Kosmische Beispiele

Die Saturnringe liegen zum großen Teil innerhalb der Roche-Grenze des Saturn. Dies ist neben den Hirtenmonden, deren Stabilität durch innere Kohäsionskräfte erhöht wird, der Hauptgrund für die Stabilität des Ringsystems.

Komet Shoemaker-Levy 9
Komet Shoemaker-Levy 9

Der Komet Shoemaker-Levy 9 passierte im Juli 1992 den Planeten Jupiter und zerbrach dabei in 21 Fragmente zwischen 50 und 1000 m Größe, die sich auf einer mehrere Millionen Kilometer langen Kette aufreihten. Zwischen dem 16. und dem 22. Juli 1994 schlugen diese Bruchstücke dann auf Jupiter auf.

Bei engen Begegnungen von Sternen mit einem Abstand, der geringer ist als die Roche-Grenze, werden diese in einer so genannten Sternkollision stark verändert, meist wird der kleinere zerrissen.

Auf der Erde führen die Gezeiten in den Meeren zu Ebbe und Flut. Die Gezeiten wirken jedoch auch auf den Erdmantel selbst, so dass auch die Kontinente selbst den Gezeiten mit einer Verzögerung von zwei Stunden folgen, allerdings ist der Effekt mit Vertikalbewegungen von 20 bis 30 Zentimeter deutlich geringer als die mehrere Meter hohen Tiden der Meere.

Durch die Gezeiten in großen Meeren können durch den Tidenhub lokal sehr starke Strömungen entstehen. Die dabei vorhandene kinetische Energie kann mittels eines Gezeitenkraftwerks genutzt werden.

[Bearbeiten] Gezeitenreibung

Die Gezeitenkräfte bremsen die Rotation der beteiligten Körper, dabei wird der Rotations-Drehimpuls aufgrund der Drehimpulserhaltung auf den Bahndrehimpuls des Mondes übertragen. Der Mechanismus dazu ist folgender: Durch die Gezeitenkräfte kommt es zu einer Verformung des Zentralkörpers (Gezeitenberge, d.h. Flutwellen auf der Erde, aber auch die Verformung der festen Erdoberfläche infolge der Gezeiten). Wenn der Planet schneller rotiert, als der Mond umläuft, bewegen sich diese Gezeitenberge immer "vor" dem Mond. Das ist eine Folge der Trägheit der Massen auf dem Zentralkörper (im allgemeinen Sinn, nicht nur Massenträgheit im Sinne von Impulserhaltung). Diese vorlaufenden Gezeitenberge verursachen eine Komponente in der Gravitationskraft, die auf den Mond in Vorwärtsrichtung einwirkt ("Vorwärts" im Sinne des Mondumlaufs). Die so zugeführte Energie wird sofort in potentielle Energie umgesetzt, wodurch der Mond langsam aber sicher eine höhere und langsamere Umlaufbahn einnimmt.

Eine Gezeitenreibung tritt umgekehrt auch auf dem umlaufenden Mond ein.

Dieser Effekt führt eventuell zu einer gebundenen Rotation des kleineren Körpers, wie es z. B. beim Erdmond der Fall ist. Kommt es bei beiden Körpern zu einer gebundenen Rotation, so spricht man von Korotation.

Als weiterer Effekt vergrößert sich, wenn Bahndrehimpuls und Rotation die gleiche Richtung besitzen, der Abstand der beiden Körper, wenn die Rotation des größeren Körpers schneller als der Umlauf des kleineren Körpers ist. Sind Bahndrehimpuls und Rotation entgegengerichtet, was vor allem bei eingefangenen Körpern auftreten kann, oder umrundet der kleinere Körper den größeren schneller als dieser rotiert, wird der Abstand hingegen verringert.

In einer genaueren Analyse müssen Energie und Drehimpuls in diesem Prozess separat bilanziert werden, da es für beide Größen in der Physik jeweils einen Erhaltungssatz gibt. Die folgenden Erläuterungen gehen zwecks besserer Verständlichkeit von einem isolierten Planet - Mond System aus. Das ist kein vollständiges Modell, da es andere Planeten, die Sonne (Zentralstern) und andere äußere Einflüsse geben kann, die dieses System stören würden (siehe auch Störungsrechnung).

Energieerhaltung: Der Planet verliert Rotationsenergie durch Reibung bei der kontinuierlichen Bildung der Gezeitenberge (Verformung des Planeten auf Grund der Gezeitenkraft), und durch die Übertragung von Energie auf den Mond infolge der Gravitationswirkung der Gezeitenberge. Diese Energie findet sich in der Rotationsenergie des Mondes, einer Erwärmung (Wärmeenergie) der Erde durch Reibung, den Strömungen im Erdinneren (kinetische Energie) und den durch einen MHD-Prozess ausgelösten Veränderungen im Magnetfeld der Erde wieder (genauer: elektromagnetisches Feld).

Drehimpulserhaltung: Der Drehimpulsverlust bei der Abbremsung der Erdrotation wird auf den Drehimpuls des Mondes in seinem Orbit um die Erde (Bahndrehimpuls), auf den Drehimpuls von Strömungen im Erdinneren, und auf das Erdmagnetfeld (elektromagnetisches Feld) der Erde übertragen.

Welche dieser Energie- oder Drehimpulsformen für ein bestimmtes Planet-Mond-System von Bedeutung sind, hängt von den Umständen ab. Da es sich allgemein um Prozesse aus dem Gebiet der Magnetohydrodynamik unter dem Einfluss der Gravitation handelt, ist die Aufgabenstellung in der Regel nicht trivial.

Für exotische Konstellationen muss eventuell berücksichtigt werden, dass auch Elementarteilchen Energie und Drehimpuls tragen können (Teilchenstrahlung).

[Bearbeiten] Auswirkungen

Der Name Gezeitenkraft rührt daher, dass es dieser Effekt ist, der auf der Erde die Gezeiten hervorruft. Gezeitenkräfte sind noch für eine Reihe weiterer Erscheinungen verantwortlich:

  • Durch Gezeitenkräfte verformen sich Himmelskörper, sie werden leicht in Richtung der Gravitation in die Länge gezogen. Rotiert der Himmelskörper, so wird er dabei "durchgewalkt", ähnlich wie ein platter Reifen am Auto. Dadurch wird Rotationsenergie in Wärme umgewandelt; die Rotation verlangsamt sich dadurch so lange, bis sich eine gebundene Rotation einstellt. Der Erdmond weist der Erde aufgrund dieses Effektes immer die gleiche Seite zu. Beim Jupitermond Io sind es Gezeitenkräfte, die die Wärmeenergie für den Vulkanismus erzeugen.
  • Gezeitenkräfte verursachen die Präzession der Erde.
  • In Doppelsternsystemen können Gezeitenkräfte einen Materiefluss von einem Stern zum anderen verursachen, was in bestimmten Fällen zu Supernovae (Typ 1) führen kann.
  • Sind die Gezeitenkräfte stärker als die Kräfte, die ein Objekt zusammenhalten, so können sie auch zum Zerreißen des Objekts führen, so geschehen beim Kometen Shoemaker-Levy 9 (Roche-Grenze).

[Bearbeiten] Weblinks

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu