Número transfinito
De Wikipedia, la enciclopedia libre
Sistema numérico en matemática. |
Conjuntos de Números |
|
Números destacables |
Números Especiales |
|
Números con propiedades especiales |
Primos , Abundantes, Perfectos, Defectivos, Amigos, Sociables, Algebraicos |
Un número transfinito es un número cardinal o un número ordinal mayor que cualquier número natural. El término "número transfinito" fue introducido por el matemático alemán Georg Cantor.
[editar] Historia y desarrollo
Cantor se percató de que era posible hablar de la cantidad de elementos de un conjunto infinito tal y como se habla de la cantidad de elementos de un conjunto finito. Es decir, encontró que era posible “medir” el tamaño de un conjunto infinito, y, de hecho, comparar el tamaño de dos conjuntos infinitos para encontrar que el de uno era “mayor” que el del otro, y elaboro una teoría hasta cierto punto rigurosa respecto de estas ideas: la teoría de números transfinitos.
Cantor argumentaba que el desprecio de los matemáticos por el infinito y su naturaleza se debía a un abuso de este concepto. Lo que Cantor quería decir era que el término infinito se aplicaba sin distinción a cualesquiera conjuntos no finitos, siendo que, de entre ellos, era posible tomar algunos que son, de alguna manera, medibles y de tamaños comparables. Las reflexiones y posterior estudio de Cantor a cerca de todo esto comenzaron cuando, intuyendo éste algún resultado no trivial, se preguntó si era posible poner en correspondencia uno a uno el conjunto de los números naturales con el conjunto de los números reales. Pronto pudo Cantor demostrar que no existía tal correspondencia, revelando así una diferencia entre la infinitud de dos conjuntos infinitos, lo que constituyó, en definitiva, un resultado de mucho interés. Cantor probó también que, contrario a lo que pudiera pensarse, el conjunto de los números racionales, que tiene propiedad de densidad, se corresponde uno a uno con el conjunto de los números naturales.
Es fácil dar un ejemplo de dos conjuntos que, uno teniendo todos los elementos del otro y más, se corresponden uno a uno. Tomemos, por ejemplo, a los números naturales:
y tomemos ahora solo aquellos números que son el cuadrado de algún número natural (claramente no todos los números naturales cumplen con esta característica, por los que se desacrtan muchos de ellos):
A penas es necesario explicar más para percatarse de que existe una correspondencia uno a uno entre y su subconjunto .
Además, Cantor encontró que la medición de un conjunto (ya sea finito o infinito), puede realizarse de dos maneras: una de ellas no considera nada más que la cantidad de elementos de un conjunto, mientras que la otra toma en cuenta el orden de los elementos de un conjunto. De esta distinción surgen los números cardinales y los números ordinales, los cuales pueden ser también transfinitos. Para conjuntos finitos, estos dos conceptos son equivalentes. Sin embargo, los dos conceptos difieren en el momento de aplicarse a conjuntos infinitos.
[editar] Primeros números transfinitos
Los primeros números transfinitos que se introdujeron ser referían al cardinal de ciertos conjuntos. Así varios de estos números transfinitos se representan con símbolos especiales:
- El cardinal de los números reales: ;
- El cardinal de los números naturales: (Alef-0).
- El cardinal inmediatamente superior a :
Usando los axiomas de Zermelo-Fraenkel (ZF) puede comprobarse que los tres cardinales anteriores cumplen . La hipótesis del continuo afirma que de hecho . Gödel probó en 1938 que esta hipótesis es consistente con los axiomas ZF, y por tanto puede ser tomado como un axioma nuevo para la teoría de conjuntos. Sin embargo, en 1963 Paul Cohen probó que la negación de la hipótesis del continuo también es consistente con los axiomas ZF, lo cual prueba que dicha hipótesis es totalmente independiente de los axiomas ZF. Es decir, pueden construirse tanto "teorías de conjuntos cantorianas" en las que la hipótesis del continuo es una afirmación cierta, como "teorías de conjuntos no cantorianas" en las que la hipótesis del continuo sea falsa. Esta situación es similar a la de las geometrías no euclídeas.