New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Matrice définie positive - Wikipédia

Matrice définie positive

Un article de Wikipédia, l'encyclopédie libre.

En algèbre linéaire, la notion de matrice définie positive est analogue à celle de nombre réel strictement positif.

On introduit tout d'abord les notations suivantes ; si a est une matrice à éléments réels ou complexes :

  • aT désigne la transposée de a
  • a * désigne la matrice transconjuguée de a (conjuguée de la transposée)

On rappelle que :

  • \mathbb{R} désigne le corps des nombres réels
  • \mathbb{C} désigne le corps des nombres complexes


Sommaire

[modifier] Matrice symétrique réelle définie positive

Soit M une matrice symétrique réelle d'ordre n. Elle est dite définie positive si elle vérifie l'une des 4 propriétés équivalentes suivantes :

1. Pour toute matrice colonne non nulle \ \textbf{x} à n éléments réels, on a
\textbf{x}^{T} M \textbf{x} > 0.
2. Toutes les valeurs propres de M sont strictement positives, c'est-à-dire :
\ \mathrm{sp}(M)  \subset\, ]0,\, +\infty[\,.
3. La forme bilinéaire symétrique définie par la relation
\langle \textbf{x},\textbf{y}\rangle_M = \textbf{x}^{T} M \textbf{y}

est un produit scalaire sur \mathbb{R}^n (identifié ici à l'espace vectoriel des matrices colonnes à n éléments réels).

4. Pour tout entier k tel que 1 ≤ kn, la sous-matrice principale d'ordre k de M a un déterminant strictement positif.

Une matrice symétrique réelle est dite définie négative si son opposée (symétrique elle aussi) est définie positive.

[modifier] Exemple : matrice de Hilbert

On appelle matrice de Hilbert la matrice (symétrique d'ordre n) H = (h_{i,\, j}), telle que h_{i,\, j} = \frac{1}{i + j  - 1}. Elle est définie positive.

En effet, soit une matrice colonne quelconque \ \textbf{x} à n éléments réels x_1, \dots, x_n.
On remarque que \forall\, i,\, \forall\, j,\, h_{i,\,j} = \int_0^1 t^{i + j - 2}\, dt. Alors, par linéarité de l'intégrale :
\textbf{x}^{T} H \textbf{x} = \sum_{i = 1}^n \sum_{j = 1}^n h_{i,\, j}\, x_i\, x_j = \int_0^1 \sum_{i = 1}^n \sum_{j = 1}^n t^{i + j - 2}\, x_i\, x_j\, dt =
\int_0^1 \sum_{i = 1}^n \sum_{j = 1}^n \left(t^{i - 1}\, x_i\right)\,  \left(t^{j - 1}\,  x_j\right)\,dt  = \int_0^1 \left(\sum_{i = 1}^n t^{i - 1}\, x_i\right)\, \left(\sum_{j = 1}^n t^{j - 1}\,  x_j\right)\,dt,
d'où enfin : \textbf{x}^{T} H \textbf{x} = \int_0^1 \left(\sum_{i = 1}^nx_i\,  t^{i - 1}\right)^2\, dt.
Dans cette dernière intégrale, l'intégrande est continu et à valeurs positives. Par conséquent :
  • \textbf{x}^{T} H \textbf{x} \geq 0 ;
  • si \textbf{x}^{T} H \textbf{x} = 0, alors pour tout t \in\, [0,\, 1],\, \left(\sum_{i = 1}^nx_i\,  t^{i - 1}\right)^2 = 0.
Donc pour tout t \in\, [0,\, 1],\, \sum_{i = 1}^nx_i\,  t^{i - 1} = 0.
Il en résulte que les \ x_i, coefficients d'un polynôme admettant une infinité de racines, sont tous nuls, c'est-à-dire \ \textbf{x} = 0.
Ceci prouve que \textbf{x}^{T} H \textbf{x} > 0 pour toute matrice colonne non nulle \ \textbf{x} à n éléments réels.

[modifier] Matrice hermitienne définie positive

On étend les définitions précédentes aux matrices complexes hermitiennes.

Soit M une matrice hermitienne d'ordre n. Elle est dite définie positive si elle vérifie l'une des 4 propriétés équivalentes suivantes :

1. Pour toute matrice colonne non nulle \ \textbf{z} à n éléments complexes, on a
\textbf{z}^{*} M \textbf{z} > 0.
2. Toutes les valeurs propres de M sont strictement positives, c'est-à-dire :
\ \mathrm{sp}(M)  \subset\, ]0,\, +\infty[\,.
3. La forme sesquilinéaire définie par la relation
\langle \textbf{x},\textbf{y}\rangle_M = \textbf{x}^{*} M \textbf{y}

est un produit scalaire sur \mathbb{C}^n (identifié ici à l'espace vectoriel des matrices colonnes à n éléments complexes).

4. Pour tout entier k tel que 1 ≤ kn, la sous-matrice principale d'ordre k de M a un déterminant strictement positif.

Une matrice hermitienne est dite définie négative si son opposée (hermitienne elle aussi) est définie positive.

[modifier] Propriétés

Les propriétés suivantes sont communes aux matrices symétriques réelles et aux matrices complexes hermitiennes.

  1. Toute matrice définie positive est inversible (à déterminant réel strictement positif), et son inverse est elle aussi définie positive.
  2. Si M est définie positive et r est un nombre réel strictement positif, alors rM est définie positive.
  3. Si M et N sont définies positives, alors M + N est définie positive.
  4. Si M et N sont définies positives, et si MN = NM (on dit qu'elles commutent), alors MN est définie positive.
Articles de mathématiques en rapport avec l'algèbre bilinéaire
Espace euclidien | Forme bilinéaire | Forme quadratique | Forme sesquilinéaire | Orthogonalité | Base orthonormale | Projection orthogonale | Inégalité de Cauchy-Schwarz | Inégalité de Minkowski | Matrice définie positive | Décomposition QR | Déterminant de Gram | Hermitien | Espace de Hilbert | Base de Hilbert | Théorème spectral | Théorème de Stampacchia | Théorème de Riesz | Théorème de Lax-Milgram | Théorème de représentation de Riesz
Modifier
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu