Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Radioaktivitás - Wikipédia

Radioaktivitás

A Wikipédiából, a szabad lexikonból.

Az alfa-sugárzás hélium atommagokból áll, és akár egy vékony papír is elnyeli őket. A béta-sugárzás elektronsugárzás, és egy alumíniumlemez elnyeli őket. A gamma-sugárzás erőssége az útja során folyamatosan csökken.
Az alfa-sugárzás hélium atommagokból áll, és akár egy vékony papír is elnyeli őket. A béta-sugárzás elektronsugárzás, és egy alumíniumlemez elnyeli őket. A gamma-sugárzás erőssége az útja során folyamatosan csökken.

A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. Ez nagy energiájú ionizáló sugárzást kelt. Radioaktív sugárzás a természetben is előfordul. Mérésére részecskedetektorokat használnak.

Tartalomjegyzék

[szerkesztés] Felfedezése

A radioaktivitást 1896-ban Henri Becquerel francia tudós fedezte fel, amiért 1903-ban megkapta a fizikai Nobel-díjat. Becquerel foszforeszkáló anyagokkal kísérletezett. Úgy gondolta, hogy a katódsugárcső fénye valamilyen módon összefügg a foszforeszcenciával. Különféle foszforeszkáló anyagokat burkolt fekete papírba egy fényképlemezzel együtt, és a fényképlemez feketedését vizsgálta. Nem észlelt feketedést amíg uránsókkal nem próbálkozott. Miután a nem foszforeszkáló uránsókkal próbálkozott, kiderült, hogy a jelenségnek semmi köze sincs a foszforeszcenciához. Kimutatta, hogy a sugárzás intenzitása arányos az urán koncentrácójával, így arra következtetett, hogy ez a sugárzás az urán atom tulajdonsága. Pierre és Marie Curie új, sugárzó elemek után kutatva fedezték fel, hogy a tórium is sugároz. Az uránércből kivontak még két erősebben sugárzó elemet, a polóniumot és a rádiumot. A Curie házaspár nehéz és fárasztó munkájának szemléltetéséül álljon itt az adat, hogy nyolc tonna uránércből 0,1 gramm rádiumot vontak ki. A Curie házaspár és Ernest Rutherford kísérletei a radioaktív sugárzásnak két összetevőjét mutatta ki: a nagyon rövid hatótávolságú (levegőben kevesebb, mint 1 cm) alfa-sugárzás, és a béta-sugárzás (pár 10 cm levegőben). 1900-ban fedezte föl Paul Ulrich Villard a gamma-sugárzást, amit 10 cm ólom sem bír elnyelni. Később bebizonyították, hogy a gamma-sugárzás valójában nagyenergiájú elektromágneses sugárzás.

[szerkesztés] Radioaktív sugárzás (bomlás)

Három fontosabb fajtája van. Egyre nagyobb áthatolóképességgel:

  1. Alfa-bomlás során az atommagból egy hélium atommag (erősen kötött 2 proton és 2 neutron) válik ki. Erősen ionizáló, viszont a hatótávolsága levegőben 1 cm alatti.
  2. Béta-bomlás során az atommagban neutronból lesz proton elektron kibocsátása közben. Így a béta-sugárzás valójában elektronsugárzás. Közepesen ionizáló hatású, hatótávolsága levegőben pár 10 cm.
  3. Gamma-bomlás során energia távozik nagy energiájú fotonként. Az előbbiek kísérőjelensége szokott lenni. Hatótávolsága levegőben praktikusan végtelen, a nagy tömegszámú elemek (általában ólom) gyöngítik hatékonyan.

Az alábbi táblázat rendszerezi a három fontosabb és több további bomlásfajtát nagyjából csökkenő előfordulási valószínűség szerint rendezve. A az atom tömegszámát (protonok és neutronok együttes száma), Z pedig a rendszámot (protonok száma) jelöli.

Bomlási mód Résztvevő részecskék Leánymagok Mag gerjesztettség
Bomlás magemisszióval
Alfa-bomlás Egy alfa-részecskét (A=4, Z=2) emittál a mag
(A-4, Z-2)
Proton-emisszió Egy proton kilökődik a magból
(A-1, Z-1)
?
Neutron-emisszió Egy neutron kilökődik a magból
(A-1, Z)
?
Kettős proton-emisszió Egyidejűleg két proton kilökődése a magból
(A-2, Z-2)
Spontán bomlás A kezdeti mag kettő vagy több kisebb magra, valamint részecskékre bomlik
-
Cluster decay A mag kibocsát egy specifikus kis tömegű magot(A1, Z1) ami nagyobb, mint az alfa-részecske
(A-A1, Z-Z1) + (A1,Z1)
A béta-bomlás különböző módjai
Negatív béta-bomlás A mag egy elektront és egy antineutrínót emittál
(A, Z+1)
Pozitron-emisszió, ez is pozitív béta-bomlás A mag egy pozitront és egy neutrínót emittál
(A, Z-1)
Elektron-befogás A mag befog egy keringő elektront és kibocsát egy neutrínót - A leánymag egy gerjesztt, instabil állapotba kerül
(A, Z-1)
Kettős béta-bomlás A mag két elektront és két antineutrínót bocsát ki
(A, Z+2)
Kettős elektron-befogás A mag elnyel két körülötte keringő elektront és két neutrínót bocsát
(A, Z-2)
Elektron-befogás pozitron-emisszió által A mag elnyel egy keringő elektront és kibocsát egy pozitront és két neutrínót
(A, Z-2)
Kettős pozitron-emisszió A mag kibocsát két pozitront és két neutrínót
(A, Z-2)
Átmenetek a mag két azonos összetételű állapota között
Gamma-bomlás A gerjesztett mag kibocsát egy nagy energiájú gamma-fotont (gamma-sugárzás)
(A, Z)
Magátalakulás A gerjesztett mag energiát ad egy a mag körül „keringő” elektronnak és kilöki
(A, Z)

[szerkesztés] Aktivitás

Egy adott radioaktív forrás aktivitása megmondja, hogy hány bomlás történik másodpercenként. Mértékegysége a Bq (Henri Becquerel tiszteletére), 1 Bq másodpercenként egy bomlásnak felel meg. Régebbi mértékegység a Ci (Curie), 1 Ci egy gramm rádium aktivitásának felel meg (3.7*1010 Bq). A radioaktív bomlás teljesen véletlen jelenség, egy adott atommagról nem lehet megállapítani, hogy mikor fog elbomlani, viszont az elbomlásának időbeni valószínűsége állandó. Egy forrásban a bomlások száma tehát arányos a radioaktív magok számával, amit a következőképp írhatunk föl:
- \left(\frac{\ dN}{N}\right) = a \ dt
Ezt integrálva kapjuk a bomlási törvényt:
N\left(t\right) = N_0e^{-a t}
Látható, hogy a radioaktív magok száma exponenciálisan csökken. Az a a bomlásállandó: megadja, hogy mekkora valószínűségel bomlik el egy atommag egy másodperc alatt. Többet használják viszont a T felezési időt: ez megadja, hogy mennyi idő alatt bomlik el az összes radioaktív mag fele. A bomlásállandóból a következőképp lehet kifejezni:
T = \frac{\ln 2}{a}
Ha ismerjük egy izotóp felezési idejét, akkor egy adott forrás A aktivitása könnyen meghatározható:
A = \frac{\ln 2}{T} N

[szerkesztés] Radioaktív atommagok

  • elsődleges természetes radionuklidok (1)
    • olyan természetes radioaktív magok, amelyek megtalálhatóak a Naprendszer keletkezése óta
    • felezési idejük nagyon hosszú
    • 26 ilyen mag ismert. Pl.: 238U ( T=4,47*109 év ), 40K ( T=1,28*109 év ), 87Rb ( T=4,8*1010 év )
  • másodlagos természetes radionuklidok (2)
    • Olyan magok, amelyek (1) bomlása révén keletkeznek
    • Felezési idejük nagyon rövid, a Naprendszer keletkezése óta nem találhatóak meg
    • 38 ilyen mag ismert. Pl.: 226R (T=1600 év), 234Th (T=24,1 nap)
  • Indukált természetes radionuklidok (3)
    • állandóan keletkeznek a kozmikus sugárzás hatására
    • 10 ilyen mag ismert. Pl.: 3H (T=12,3 év), 14C (T=5730 év)
  • mesterséges radionuklidok (4)
    • emberi tevékenység során keletkeztek, a természetben nincsenek számottevően jelen
    • 2000 ilyen mag ismert 60Co, 137Cs, 24Na

[szerkesztés] Legfontosabb radioaktív atommagok

[szerkesztés] Biológiai hatásai

A radioaktív anyagok jele.
A radioaktív anyagok jele.

Hogy a sugárzás biológiai hatásait objektíven felmérhessük, megfelelő fizikai mennyiségeket kell definiálni. Így vezették be a dózist, ami a sugárzásból 1 kg anyag által elnyelt energia mennyisége. Mértékegysége a Gray (1 Gy = 1 J/kg). A régi mértékegység a rad (1 rad = 0,01 Gy).

Kísérletileg igazolt tény, hogy a radioaktív sugárzás hatása élő szervezetekre nagymértékben függ a fajtájától és az energiájától. Adott energiájú alfa-részecske több kárt okoz, mint egy ugyanakkora energiájú elektron, vagy egy foton. A különbség a lineáris energiaveszteség (dE/dx) különbözőségében rejlik. Például egy alfa-részecske az energiáját fémben 1 mikrométer alatt adja le, míg ehhez egy gamma-fotonnak akár több centiméterre is szüksége lehet. Emiatt minden fajta sugárzáshoz egy koefficienst rendelünk – a biológiai hatásosságot (RBE – Relative Biological Effectivity). A dózis és a biológiai hatásosság szorzata az ekvivalens dózis, aminek a mértékegysége a sievert (Sv).

A radioaktív sugárzás hatása azonban az érintett szerv típusától is függ. Minden szervhez egy koeficiens tartozik, ami nem függ a sugárzás fajtájától és energiájától. Így az effektív dózis (egy adott szervre) egyenlő az ekvivalens dózis és a szerv koefficiensének szorzatával.

Egy ember átlagosan évi 2,5 mSv dózist nyel el. Okai a levegőben lévő radon, a kozmikus sugárzás, röntgenvizsgálatok stb. Fontos kiemelni, hogy a legnagyobb része (2 mSv) természetes forrásból származik.

[szerkesztés] A bomlási sorok

A radioaktív bomlás során (úgynevezett anyaelemből) egy új elem (úgynevezett leányelem) jön létre. Megesik, hogy az is radioaktív, így újabb bomlás történik. Ez a folyamat addig tart, amíg a stabil elemhez nem érünk. Ezt nevezik bomlási sornak. A radioaktív bomlás során az tömegszám vagy néggyel csökken (az alfa-bomlás esetében), vagy nem változik (a béta-bomlás és gamma-bomlás esetében). Ezért négy bomlási sor létezik attól függően, hogy a tömegszám négyes osztású maradéka 0, 1, 2 vagy 3. Ebből a négy bomlási sorból csak az a 3 maradt meg, amelyeknél a leghosszabb felezési idejű izotóp felezési ideje nagyságrendileg összemérhető a Föld életkorával (U-238, U-235 és a Th-233). A negyedik (neptúnium) anyaelemének bomlási ideje kétmillió év, így ez ma már csak mesterséges eredetből található meg a Földön.

[szerkesztés] Alkalmazása

[szerkesztés] Kormeghatározás

Élőlények maradványainak a korát a bennük található radioaktív 14C izotóp (a felezési ideje 5560 év) koncentrációjából lehet meghatározni. A magas légkörben folyamatosan keletkező 14C izotóp beépül az élőszervezetbe Az élőlény kimúlása után az anyagcsere megszűnik, és a 14C/12C izotóparány csökkenni kezd, mivel a kémiai tulajdonságokat meghatározó rendszám azonos, ezért az arány csupán a bomlás miatt változik meg. A maradványból kinyert szén megváltozott izotópösszetételéből következtetni lehet a maradvány korára. Ez a módszer kb. 40-50 ezer évig használható kb. 10% pontossággal (ez az idő elteltével a 14C teljesen eltűnik maradványból).
Megjegyzés: bizonyos korrekciókkal a pontosság nagymértékben növelhető, de ennek feltételei nem mindig teljesülnek. Pl. a fák évgyűrűinek elemzései kiváló kalibrációs lehetőséget adnak : a Kanári szigetek sárkányfája, a Dracena Draco néhány példánya 4000 éves, így a 14C módszer kalibrációja néhány ezer évre visszamenőleg megoldott. Más izotópokkal más korszakokat lehet vizsgálni (pl.: a 235U/238U arányból is meg lehet állapítani a Föld korát).

[szerkesztés] Nyomjelzés

A radioaktív nyomkövetés vagy nyomjelzés, amelyet Hevesy György dolgozott ki, a következőn alapszik: a rendszerben levő bizonyos elem egy részét ugyanazon elem radioaktív izotópjára cseréljük. Ettől kezdve különböző detektorokkal lehet követni az elem mozgását a rendszerben. Ilymódon a pajzsmirigy működését, (a pajzsmirigybe radioaktív jódot viszünk), az erek átjárhatóságát, a növények tápanyagcseréjét (radioaktív foszforral) lehet vizsgálni.

Az izotópos füstjelző berendezések működésének elve, hogy a kis áthatoló képességű alfa-részecske a levegőben lebegő szilárd részecskéken (magyarul füst) nagy mértékben elnyelődik, így az átfolyó áram hirtelen lecsökken.

Megjegyzés: Az alfa-részecske kétszeresen pozitív, így egy sugárzó izotóp, felezési időtől függően, hosszú ideig egy állandó átfolyó áramot indukál, ezt a tulajdonságát használják ki a pacemakerekben, hiszen így a beteget nem kell maximum 5-10 évente egy nyílt mellkas műtétnek kitenni, amit egy normál elem cseréje okozna.

[szerkesztés] Nukleáris erőművek

[szerkesztés] Források

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu