New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Zénón paradoxonjai - Wikipédia

Zénón paradoxonjai

A Wikipédiából, a szabad lexikonból.

Zénón paradoxonjainak azokat a paradoxonokat nevezzük, amelyeket az eleai Zénón ötlött ki Parmenidész elméletének alátámasztására, miszerint az érzékek által alkotott kép félrevezető, konkrétabban, hogy a mozgás csak illúzió, valójában nem létezik.

Zénón nyolc fennmaradt (és Arisztotelész Fizika című művében leírt) paradoxonja mind nagyjából ugyanarra az alapgondolatra épül, és a legtöbbet már az ókorban is könnyen cáfolhatónak tartották. A három leghíresebb és legjobban védhető – Akhilleusz és a teknős, a fának hajított kő, és a nyílvessző paradoxonja – alább olvasható.

Ez a három paradoxon sok fejtörést okozott számos ókori és középkori filozófusnak. Newton és Leibniz a függvényanalízis területén (elsősorban a végtelen sorozatok kezelésében) elért áttöréseinek köszönhetően váltak feloldhatóvá a 17. században. Azt, hogy a valós számok megalapozása és általában a hagyományos matematika számára nem jelentenek problémát, a 19. században sikerült végleg belátni; amikor az analízis eszközeinek megújításával a matematikusok számos nehéz problémát oldottak meg.

Tartalomjegyzék

[szerkesztés] Akhilleusz és a teknős

Képzeljük el Akhilleuszt, a leggyorsabb görögöt, amint versenyt fut egy teknőssel. Mivel olyan gyors, nagyvonalúan száz láb előnyt ad a hüllőnek. Alighogy elindul a verseny, Akhilleusz pár ugrással ott terem, ahol a teknős kezdett. Ezalatt az idő alatt azonban a teknős is haladt egy keveset, talán egy lábnyit. Akhilleusz egy újabb lépéssel ott terem, ám ezalatt a teknős ismét halad egy kicsit, és még mindig vezet. Akármilyen gyorsan is ér Akhilleusz oda, ahol a teknős egy pillanattal korábban volt, amaz mindig egy kicsit előrébb lesz. Zénón érvelése azt látszik igazolni, hogy Akhilleusz sohasem fogja megelőzni, de még csak utolérni sem a teknőst.

Ma már tudjuk, hogy végtelen sok szám összege is adhat véges eredményt. A paradoxon esetében, ha összeadjuk a végtelen sok apró időszeletet, amit az egyes lépések igénybe vesznek, véges időt kapunk eredményül, méghozzá pontosan annyit, amennyire Akhilleusznak szüksége van, hogy utolérje a teknőst. Ha ennél több időt adunk, természetesen meg is előzi.

Bár ezt a mai megoldást is megkérdőjelezik egyesek, mondva, hogy végtelen sok számhoz vagy végtelen sok apró időszelethez végtelen ideig kellene az összeadást folytatni, így soha nem érhetnénk célba. A végtelenhez pedig több időt adni – e nézet szerint – eleve abszurditás, hiszen a végtelen minden lehetőséget magában foglal, így nem lehet ahhoz hozzáadni vagy elvonni. Ezt a nézetet az úgynevezett újzénoniánusok képviselik.

[szerkesztés] A fának hajított kő

Ez a paradoxon az előző egy variánsa. Zénón nyolc lábnyira áll egy fától, kezében egy követ tart. A követ a fa felé hajítja. Ahhoz, hogy a kő eltalálja a fát, először meg kell tennie a köztük lévő távolság, azaz a nyolc láb felét, ehhez pedig valamennyi időre van szüksége. Ezután még mindig hátra van négy láb, ennek megtételéhez pedig először ennek a felét, vagyis további két lábat kell repülnie, és ehhez ismét adott idő kell. Ezután további egy, majd fél, majd negyed lábat kell megtennie, és így tovább a végtelenségig. Zénón következtetése: a kő sohasem éri el a fát.

[szerkesztés] A nyílvessző

Itt egy repülő nyílvesszőt kell elképzelnünk. Bármely időpillanatban a nyíl a levegő egy ismert pontján tartózkodik. Ha ennek a pillanatnak nincs időbeli kiterjedése, akkor a nyílnak „nincs ideje”, hogy elmozduljon, tehát nyugalomban kell, hogy legyen. Hasonló logikával belátható, hogy az ezt követő pillanatokban is nyugalomban van. Mivel ez az idő bármelyik pillanatára igazolható, a nyílvessző egyátalán nem mozoghat: a mozgása csak illúzió.

Zénón viszont azt állítja, hogy a mozgás csak illúzió, valójában nem létezik, így tehát sebességről sincs értelme beszélni, sem annak határértékéről.

A feloldás szerint pusztán azért, mert egy kimerevített pillanatban a nyíl állni látszik, nem mondhatjuk, hogy valóban nem mozog, mivel a nyugalom csak időben elnyújtva értelmezhető. Ahhoz, hogy a nyíl nyugalmát ellenőrizzük, több különböző pillanatot kell vizsgálni, ezekben pedig a nyíl nyilvánvalóan különböző helyeken tartózkodik, tehát mozog.

A pontosabb vizsgálathoz ismét a kalkulushoz kell nyúlni. Ezáltal a nyíl különböző időbeli különböző helyzetei és a sebessége között egzakt összefüggést állíthatunk fel a határértékszámítás segítségével. Attól, hogy a kiválasztott időszelet hossza nullához tart, a megtett távolság és az eltelt idő hányadosa (a sebesség) nem kell, hogy szintén nullához tartson. A valóságban egy véges, nem nulla értékhez konvergál: ez az érték a nyíl sebessége a kimerevített időpillanatban.

[szerkesztés] Kvantum Zénón-paradoxon

Modern kvantummechanikai eredmények igazolják, hogy atomi részecskék másképp viselkednek, mozognak, ha megfigyeljük őket, mert a megfigyelés maga hatással van a megfigyelt folyamatra. Ez a jelenség sokakat emlékeztetett Zénón nyílvessző-paradoxonjára (a nyílnak sincs sebessége, ha egy adott pillanatban megfigyeljük), ezért elnevezték kvantum Zénón-paradoxonnak.


[szerkesztés] További olvasnivalók

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu