New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Teorema binomiale - Wikipedia

Teorema binomiale

Da Wikipedia, l'enciclopedia libera.

Il teorema binomiale (o anche formula di Newton, binomio di Newton e sviluppo binomiale) è una formula che permette di ottenere lo sviluppo della potenza n-esima di un binomio qualsiasi. La forma algebrica di tale formula è:

(a+b)^n_{} = \sum_{k=0}^n {n \choose k} a^{(n-k)} b^{k}

in cui il fattore {n \choose k} rappresenta il coefficiente binomiale di ciascun monomio costituente lo sviluppo in questione.

Il valore del generico coefficiente binomiale è infatti uguale all'elemento dell'n-esima riga in k-esima posizione del triangolo di Tartaglia, con \ n=0,1,...,m e \ k=0,...,n. Infatti detto \ a_{n,k} il generico termine del triangolo, valgono le identità a_{n,0}={n \choose 0}=1 ed a_{n,n}={n \choose n}=1, da cui discende che essendo il triangolo di Tartaglia costruito secondo la ricorsione \ a_{n,k}=a_{n-1,k}+a_{n-1,k-1}, con \ a_{n,0}=1 ed \ a_{n,n}=1 e in forza della proprietà dei coefficienti binomiali {n-1 \choose k}+{n-1 \choose k-1}={n \choose k}, vale l'uguaglianza

a_{n,k}={n \choose k}.

Come esempio di applicazione della formula, riportiamo i casi piccoli, n = 2, n = 3 ed n = 4:

(x + y)^2 = x^2 + 2xy + y^2\,
(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\,
(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4.\,

[modifica] Dimostrazione

Il Teorema binomiale può essere dimostrato per induzione.

Infatti è possibile introdurre per tale teorema un passo base per cui esso risulta banalmente vero

(a+b)^1_{} = \sum_{k=0}^1 {1 \choose k} a^{(1-k)} b^{k} = a+b

e provare con il passo induttivo la veridicità del teorema per un esponente n qualsiasi. Infatti presa per corretta l'espressione

(a+b)^n_{} = \sum_{k=0}^n {n \choose k} a^{(n-k)} b^{k}

sicuramente vera per n=1

si ha

(a+b)^{n+1}\, =(a+b)(a+b)^n\,
=(a+b)\sum_{k=0}^n\,{n \choose k}a^{n-k}b^{k}
=\sum_{k=0}^n\,{n \choose k} a^{n+1-k}b^{k}+\sum_{k=0}^n\,{n \choose k}a^{n-k} b^{k+1}

da cui, essendo

\ \sum_{k=0}^n\,{n \choose k} a^{n+1-k}b^{k} = {n \choose 0} a^{n+1} + \sum_{k=1}^{n}\,{n \choose k} a^{n+1-k}b^{k}
= {n \choose 0} a^{n+1} + \sum_{k=0}^{n-1}\,{n \choose k+1} a^{n+1-(k+1)}b^{k+1}
= {n \choose 0} a^{n+1} + \sum_{k=0}^{n-1}\,{n \choose k+1} a^{n-k}b^{k+1}

ed

\ \sum_{k=0}^n\,{n \choose k} a^{n-k}b^{k+1} = \sum_{k=0}^{n-1}\,{n \choose k} a^{n-k}b^{k+1}+ {n \choose n} b^{n+1}

si ha che, utilizzando nel primo passaggio una nota proprietà del coefficiente binomiale

(a+b)^{n+1} \, ={n \choose 0} a^{n+1}+\sum_{k=0}^{n-1}\,\left({n \choose k} + {n \choose k+1}\right)a^{n-k}b^{k+1}+{n \choose n} b^{n+1} \,
={n \choose 0} a^{n+1}+\sum_{k=0}^{n-1}\,{n+1 \choose k+1} a^{n-k}b^{k+1}+ {n \choose n} b^{n+1}
={n \choose 0} a^{n+1}+\sum_{k=1}^{n}\,{n+1 \choose k} a^{n+1-k}b^{k}+ {n \choose n} b^{n+1}

essendo infine \ {n \choose 0} = {n+1 \choose 0} = 1 e \ {n \choose n} = {n+1 \choose n+1} = 1

si ha che

\ {n \choose 0} a^{n+1}+\sum_{k=1}^{n}\,{n+1 \choose k} a^{n+1-k}b^{k}+ {n \choose n} b^{n+1} = {n+1 \choose 0} a^{n+1}+\sum_{k=1}^{n}\,{n+1 \choose k} a^{n+1-k}b^{k}+ {n+1 \choose n+1} b^{n+1}

si ottiene l'espressione formale dello sviluppo della potenza successiva del binomio

\ (a+b)^{n+1} = \sum_{k=0}^{n+1}\,{n+1 \choose k} a^{(n+1)-k}b^{k}

che conferma la tesi.

[modifica] Voci correlate

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu