Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions テータ関数 - Wikipedia

テータ関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』

以下の関数をヤコビのテータ関数(てーたかんすう)という。 但し、\image\tau>0とする。

\begin{align}\vartheta_1(v;\tau) &=-\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}\left(n+\frac{1}{2}\right)^2+2{\pi}i(n+\frac{1}{2})(v+\frac{1}{2})}} &=2\sum_{n=0}^{\infty}{(-1)^n\left(e^{{\pi}i{\tau}}\right)^{{(n+\frac{1}{2})}^2}\sin(2n+1){\pi}v}\\ \end{align}
\begin{align}\vartheta_2(v;\tau) &=\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}\left(n+\frac{1}{2}\right)^2+2{\pi}i(n+\frac{1}{2})v}} &=2\sum_{n=0}^{\infty}{\left(e^{{\pi}i{\tau}}\right)^{{(n+\frac{1}{2})}^2}\cos(2n+1){\pi}v}\\ \end{align}
\begin{align}\vartheta_3(v;\tau) &=\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}n^2+2{\pi}inv}} &=1+2\sum_{n=1}^{\infty}{\left(e^{{\pi}i{\tau}}\right)^{n^2}\cos2n{\pi}v}\\ \end{align}
\begin{align}\vartheta_4(v;\tau) &=\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}n^2+2{\pi}in(v+\frac{1}{2})}} &=1+2\sum_{n=1}^{\infty}{(-1)^n\left(e^{{\pi}i{\tau}}\right)^{n^2}\cos2n{\pi}v}\\ \end{align}

これらの関数は、vの関数と見た場合には準二重周期を持ち楕円関数に関係し、τの関数と見た場合はモジュラー形式に関係する。文脈からv或いはτが明らかな場合は\vartheta_i(v)或いは\vartheta_i(\tau)と書き、更に\vartheta_i=\vartheta_i(0,\tau)と書く。文献によってはτの代わりにq = eπiτを用いることもある。また、特にMathematica関係であるが、vの代わりにπvを用いることがある。なお、英語版Wikipediaはテータ関数に関して独自の記号を採用しているが、次のように対応する。

\vartheta(v;\tau)=\vartheta_{00}(v,\tau)=\vartheta_3(v,\tau)
\vartheta_{01}(v;\tau)=\vartheta_4(v,\tau)
\vartheta_{10}(v;\tau)=\vartheta_2(v,\tau)
\vartheta_{11}(v;\tau)=-\vartheta_1(v,\tau)

目次

[編集] 準二重周期

テータ関数は準二重周期を持つ。

\begin{align}\vartheta_1(v+1;\tau) &=-\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}\left(n+\frac{1}{2}\right)^2+2{\pi}i(n+\frac{1}{2})(v+\frac{1}{2})+2{\pi}i(n+\frac{1}{2})}}\\ &=-\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}\left(n+\frac{1}{2}\right)^2+2{\pi}i(n+\frac{1}{2})(v+\frac{1}{2})+{\pi}i}}\\ &=\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}\left(n+\frac{1}{2}\right)^2+2{\pi}i(n+\frac{1}{2})(v+\frac{1}{2})}}\\ &=-\vartheta_1(v;\tau)\\ \end{align}
\vartheta_2(v+1;\tau)=-\vartheta_2(v;\tau)
\vartheta_3(v+1;\tau)=\vartheta_3(v;\tau)
\vartheta_4(v+1;\tau)=\vartheta_4(v;\tau)
\begin{align}\vartheta_1(v+\tau;\tau) &=-\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}\left(n+\frac{1}{2}\right)^2+2{\pi}i(n+\frac{1}{2})(v+\frac{1}{2})+2{\pi}i(n+\frac{1}{2})\tau}}\\ &=-\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}\left(n+1+\frac{1}{2}\right)^2+2{\pi}i(n+1+\frac{1}{2})(v+\frac{1}{2})-{\pi}i{\tau}-2{\pi}i(v+\frac{1}{2})}}\\ &=-\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}\left(n+\frac{1}{2}\right)^2+2{\pi}i(n+\frac{1}{2})(v+\frac{1}{2})-{\pi}i{\tau}-2{\pi}i(v+\frac{1}{2})}}\\ &=\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}\left(n+\frac{1}{2}\right)^2+2{\pi}i(n+\frac{1}{2})(v+\frac{1}{2})-{\pi}i{\tau}-2{\pi}iv}}\\ &=-e^{-{\pi}i\tau}e^{-2{\pi}i{v}}\vartheta_1(v;\tau) \end{align}
\vartheta_2(v+\tau;\tau)=e^{-{\pi}i\tau}e^{-2{\pi}i{v}}\vartheta_2(v;\tau)
\vartheta_3(v+\tau;\tau)=e^{-{\pi}i\tau}e^{-2{\pi}i{v}}\vartheta_3(v;\tau)
\vartheta_4(v+\tau;\tau)=-e^{-{\pi}i\tau}e^{-2{\pi}i{v}}\vartheta_4(v;\tau)

[編集] 無限乗積表示と零点

ヤコビの三重積の公式により、

\begin{align} \vartheta_1(v;\tau) &=-\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}\left(n+1/2\right)^2}e^{2{\pi}i(n+1/2)(v+1/2)}}\\ &=-ie^{{\pi}i{\tau}/4}e^{{\pi}iv}\sum_{n=-\infty}^{\infty}{e^{{\pi}i{\tau}n^2}e^{{\pi}i{\tau}n+2{\pi}ivn+{\pi}in}}\\ &=-ie^{{\pi}i{\tau}/4}e^{{\pi}iv}\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1-e^{2m{\pi}i{\tau}}e^{2{\pi}iv}\right)\left(1-e^{(2m-2){\pi}i{\tau}}e^{-2{\pi}iv}\right)}\\ &=-ie^{{\pi}i{\tau}/4}e^{{\pi}iv}(1-e^{-2{\pi}iv})\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1-e^{2m{\pi}i{\tau}}e^{2{\pi}iv}\right)\left(1-e^{2m{\pi}i{\tau}}e^{-2{\pi}iv}\right)}\\ &=2e^{{\pi}i{\tau}/4}\sin{\pi}v\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1-e^{2m{\pi}i{\tau}}e^{2{\pi}iv}\right)\left(1-e^{2m{\pi}i{\tau}}e^{-2{\pi}iv}\right)}\\ &=2e^{{\pi}i{\tau}/4}\sin{\pi}v\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1-2e^{2m{\pi}i{\tau}}\cos{2{\pi}v}+e^{4m{\pi}i{\tau}}\right)}\\ \end{align}
\begin{align} \vartheta_2(v;\tau) &=2e^{{\pi}i{\tau}/4}\cos{\pi}v\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1+e^{2m{\pi}i{\tau}}e^{2{\pi}iv}\right)\left(1+e^{2m{\pi}i{\tau}}e^{-2{\pi}iv}\right)}\\ &=2e^{{\pi}i{\tau}/4}\cos{\pi}v\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1+2e^{2m{\pi}i{\tau}}\cos{2{\pi}v}+e^{4m{\pi}i{\tau}}\right)}\\ \end{align}
\begin{align} \vartheta_3(v;\tau) &=\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1+e^{(2m-1){\pi}i{\tau}}e^{2{\pi}iv}\right)\left(1+e^{(2m-1){\pi}i{\tau}}e^{-2{\pi}iv}\right)}\\ &=\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1+2e^{(2m-1){\pi}i{\tau}}\cos{2{\pi}v}+e^{2(2m-1){\pi}i{\tau}}\right)}\\ \end{align}
\begin{align} \vartheta_4(v;\tau) &=\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1-e^{(2m-1){\pi}i{\tau}}e^{2{\pi}iv}\right)\left(1-e^{(2m-1){\pi}i{\tau}}e^{-2{\pi}iv}\right)}\\ &=\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1-2e^{(2m-1){\pi}i{\tau}}\cos{2{\pi}v}+e^{2(2m-1){\pi}i{\tau}}\right)}\\ \end{align}

| e2mπiτ | < 1であるから\vartheta_3(v;\tau)の零点は

\begin{align} \cos{2{\pi}v}&=-\frac{e^{(2m-1){\pi}i{\tau}}+e^{-(2m-1){\pi}i{\tau}}}{2}\\ \cos{2{\pi}v}&=\frac{e^{(2m-1){\pi}i{\tau}+{\pi}i}+e^{-(2m-1){\pi}i{\tau}-{\pi}i}}{2}\\ 2{\pi}v&=\left((2m-1){\pi}{\tau}+{\pi}\right)\pm2{\pi}n\\ v&=\frac{2n'+1}{2}+\frac{2m'+1}{2}\tau \end{align}

である。他の関数の零点も同様にして求められる。

\begin{align} &\vartheta_1(v;\tau)=0\;\Leftrightarrow\;v=n+m\tau\\ &\vartheta_2(v;\tau)=0\;\Leftrightarrow\;v=\frac{2n+1}{2}+m\tau\\ &\vartheta_3(v;\tau)=0\;\Leftrightarrow\;v=\frac{2n+1}{2}+\frac{2m+1}{2}\tau\\ &\vartheta_4(v;\tau)=0\;\Leftrightarrow\;v=n+\frac{2m+1}{2}\tau\\ \end{align}

[編集] テータ定数

v = 0のときのテータ関数の値をテータ定数(theta constant)、或いはドイツ語でthetanullwerteという。これは定数といいながら実はτ関数である。

\begin{align} \vartheta_2=\vartheta_2(0;\tau) &=2e^{{\pi}i{\tau}/4}\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1+e^{2m{\pi}i{\tau}}\right)^2}\\ \end{align}
\begin{align} \vartheta_3=\vartheta_3(0;\tau) &=\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1+e^{(2m-1){\pi}i{\tau}}\right)^2}\\ \end{align}
\begin{align} \vartheta_4=\vartheta_4(0;\tau) &=\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1-e^{(2m-1){\pi}i{\tau}}\right)^2}\\ \end{align}

\vartheta_1=\vartheta_1(0;\tau)=0であるから、代わりに導関数を用いる。

\begin{align} \vartheta_1'&=\left[\frac{d}{dv}\vartheta_1(v;\tau)\right]_{v=0}\\ &=2e^{{\pi}i{\tau}/4}\pi\cos(0)\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)^3}+2e^{{\pi}i{\tau}/4}\sin(0)\frac{d}{dv}\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)\left(1-e^{2m{\pi}i{\tau}}e^{2{\pi}iv}\right)\left(1-e^{2m{\pi}i{\tau}}e^{-2{\pi}iv}\right)}\\ &=2{\pi}e^{{\pi}i{\tau}/4}\prod_{m=1}^{\infty}{\left(1-e^{2m{\pi}i{\tau}}\right)^3}\\ \end{align}

c=\pi\vartheta_2\vartheta_3\vartheta_4/\vartheta_1'について

\begin{align} c&=\prod_{m=1}^{\infty}{\left(1+e^{2m{\pi}i{\tau}}\right)^2\left(1+e^{(2m-1){\pi}i{\tau}}\right)^2\left(1-e^{(2m-1){\pi}i{\tau}}\right)^2}\\ &=\prod_{m=1}^{\infty}{\left(1+e^{4m{\pi}i{\tau}}\right)^2\left(1+e^{(4m-2){\pi}i{\tau}}\right)^2\left(1+e^{(2m-1){\pi}i{\tau}}\right)^2\left(1-e^{(2m-1){\pi}i{\tau}}\right)^2}\\ &=\prod_{m=1}^{\infty}{\left(1+e^{4m{\pi}i{\tau}}\right)^2\left(1+e^{(4m-2){\pi}i{\tau}}\right)^2\left(1-e^{(4m-2){\pi}i{\tau}}\right)^2}\\ \end{align}

これを繰り返せば指数が無限に大きくなるのでc = 1である。.


楕円関数との関係から

\begin{align}k^2 &=\operatorname{ns}^2(K+iK') &=\left(\frac{\vartheta_2\vartheta_4(1/2+\tau/2;\tau)}{\vartheta_3\vartheta_1(1/2+\tau/2;\tau)}\right)^2 &=\left(\frac{\vartheta_2}{\vartheta_3}\right)^4 \end{align}
\begin{align}1-k^2 &=\operatorname{dn}^2(K) &=\left(\frac{\vartheta_4\vartheta_3(1/2;\tau)}{\vartheta_3\vartheta_4(1/2;\tau)}\right)^2 &=\left(\frac{\vartheta_4}{\vartheta_3}\right)^4 \end{align}
\left(\frac{\vartheta_2}{\vartheta_3}\right)^4+\left(\frac{\vartheta_4}{\vartheta_3}\right)^4=1
\left(\vartheta_2\right)^4+\left(\vartheta_4\right)^4=\left(\vartheta_3\right)^4

[編集] ヤコビの虚数変換式

次の恒等式をヤコビの虚数変換式という。

\vartheta_3\left(\frac{v}{\tau},-\frac{1}{\tau}\right)=\sqrt{-i\tau}e^{{\pi}iv^2/\tau}\vartheta_3\left(v,\tau\right)
\vartheta_1\left(\frac{v}{\tau},-\frac{1}{\tau}\right)=i\sqrt{-i\tau}e^{{\pi}iv^2/\tau}\vartheta_1\left(v,\tau\right)
\vartheta_2\left(\frac{v}{\tau},-\frac{1}{\tau}\right)=\sqrt{-i\tau}e^{{\pi}iv^2/\tau}\vartheta_4\left(v,\tau\right)
\vartheta_4\left(\frac{v}{\tau},-\frac{1}{\tau}\right)=\sqrt{-i\tau}e^{{\pi}iv^2/\tau}\vartheta_2\left(v,\tau\right)
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu