超伝導電磁石
出典: フリー百科事典『ウィキペディア(Wikipedia)』
超伝導電磁石(ちょうでんどうでんじしゃく、superconducting magnet)とは、超伝導体を用いた電磁石のことである。超伝導体は電気抵抗がなく発熱の問題もないので、通常の電磁石よりも強力な磁力を発生させることができる。核磁気共鳴画像法 (MRI) ですでに実用化されており、もっとも超伝導現象を一般的に用いているものである。今後は磁気浮上式鉄道での実用が期待されている。超伝導磁石と書かれることもあり、工学分野では超電導電磁石(超電導磁石)とも書かれる。
目次 |
[編集] 概要
超伝導体は電気抵抗がゼロであるので永久に電気が流れ続け、発熱の問題もなく強力な磁力を発生させることができる。通常の金属を用いた電磁石で強い磁場を発生させるには大電流を流す必要があり、電気抵抗からくる金属の発熱という問題がでてくる。金属は温度が上がるにしたがって電気抵抗が上がる性質があるので、発熱すると抵抗が上がり続けるために流せる電流には限界がある。超伝導体は発熱しないという利点があるが、磁場に弱いという欠点がある。臨界磁場(超伝導現象を保てる磁場の限界)を越える磁場を発生させると超伝導現象は消失してしまう。外部から同等の磁場をかけた場合にも同じく超伝導現象は消失する。そのため材質には外部磁場に強い第二種超伝導体が用いられる。超伝導体は転移温度(超伝導と常伝導の境目の温度)よりも温度を下げるほどに臨界磁場は高くなるので、材質の転移温度よりもずっと低い温度で使用されている。冷却剤には4.2K(ケルビン)の液体ヘリウムが多く使用されている。何らかの原因により、超伝導現象が消失した場合、急激に電気抵抗が発生してしまい、発熱により超伝導体が破損する恐れがあるために、超伝導線の周りには銅線も通してあるものもある。この銅線は安全性を高めるために必要であり、超伝導現象が壊れたときに、超伝導体の変わりに電気を流す役目がある。通常から銅線にも電気が流れることになるが、電気は超伝導体を優先的に流れるためにそれほどの抵抗にはならない。
[編集] 材質
実用化されている超伝導電磁石のほとんどはニオブチタン (Nb3Ti) で構成されている。この材料の転移温度は10Kであり、4.2Kの状態で約15T(テスラ)の臨界磁場をもつ。転移温度18Kのニオブスズ (Nb3Sn) では、より高い臨界磁場をもつ電磁石を作ることができ、4.2Kの状態で25~30Tという臨界磁場まで耐えられる。 しかし、ニオブスズ (Nb3Sn) の線材を作るのは難しく高価なために、一般的にはニオブチタン (Nb3Ti) が用いられている。
Nb3Snの臨界磁場よりもさらに高い磁場を発生させるには、銅酸化物高温超伝導体(イットリウム系超伝導体やビスマス系超伝導体)や二ホウ化マグネシウムなどの高い転移温度をもつ超伝導体を使用する研究が行われている。二ホウ化マグネシウム (MgB2) は2001年に超伝導になることが発見されており、最近になって超伝導電磁石コイルの開発が、JR東海と独立行政法人物質・材料研究機構などの共同により行われている。この新しいコイルは、約20K (−253℃) で超電導状態の維持が可能であり、冷凍機による直接冷却が可能で、液化ヘリウムによる冷却の必要が無い利点がある。イットリウム系超伝導体は約90K (−183℃) ほどで超伝導状態を維持できる可能性があるため、実用化されれば、液化窒素等の冷媒を使用せず、冷凍機のみで臨界温度以下にまで達することが出来る利点を持つ。液体ヘリウムのコストを大幅に低減でき、軽量化にもつながる。
[編集] 応用
- 核磁気共鳴画像法 (MRI) での超伝導電磁石
超伝導磁石を用いた装置はかなり大掛かりなものとなり、コイルの総重量は数百kgに達するため、設置場所の床はかなり頑丈である必要がある。コイルの軸は鉛直方向となっているため、磁場の方向も鉛直方向となる。コイルは液体ヘリウムの入ったデュワー瓶の内部に置かれ、液体ヘリウムの沸点 (4.2K) 以下に保持される。
液体ヘリウムは蒸発して失われていくため定期的に補充する必要がある。特に強力な磁場を発生させる超伝導磁石は、ヘリウムの沸点 (4.2K) では臨界磁場が不十分なため、液体ヘリウムをわずかに減圧して気化させて蒸発熱を奪い、超流動転移点 (2.1K) 以下まで冷却して臨界磁場を高めている。また比較的磁場が小さい装置では装置周囲への漏洩磁場を抑えるために遮蔽マグネットをつけたものがある。これはメインのマグネットとは逆向きの弱い磁場を発生させてマグネット外の磁場を抑えるためである。また液体ヘリウムは高価なため、蒸発を抑制するために、そのデュワー瓶の周囲に比較的安価な液体窒素をさらに充填して外部からの熱伝導を防いでいる。
- 磁気浮上式鉄道での超伝導電磁石
車両側に浮上、推進両用に強力な磁力を安定して得るために超伝導電磁石が使用されている。マグレブで使用されている超伝導電磁石のコイルは、ニオブ・チタン (NbTi) 合金系の極細多芯線を銅母材に埋め込んだものである。コイル内を流れる電流は700A程度である。
具体的には、超伝導電磁石は、外部からの熱進入を抑えるため液化ヘリウムの入った内槽容器に入っている。さらに内槽容器は輻射シールド板が設けられ、液体窒素で約77K (−196℃) に冷却される。さらに内槽容器と外気の間の空気を抜き、真空状態になるように外槽容器に包まれている。仮に温度上昇により超伝導状態が解除されると大電流と発生した電気抵抗により急激に磁力が失われるクエンチ現象が起こる。