Сфера
Материал из Википедии — свободной энциклопедии
Сфе́ра — замкнутая поверхность, геометрическое место точек в пространстве, равноудалённых от данной точки, называемой центром сферы.
[править] Двумерная сфера (в трёхмерном пространстве)
Уравнение сферы
(x - x0)2 + (y - y0)2 + (z - z0)2 = R2
где (x0,y0,z0) — координаты центра сферы, R — её радиус.
Параметрическое уравнение сферы с центром в начале координат:
, где
Сфера является поверхностью шара. Площадь поверхности сферы 4πR2.
[править] n-мерная сфера
В общем случае уравнение n-1-мерной сферы (в евклидовом пространстве) имеет вид:
, где (a1,...,an) — центр сферы, а r — радиус.
Пересечение двух n-мерных сфер — n-1-мерная сфера, лежащая на радикальной гиперплоскости этих сфер.
В n-мерном пространстве могут попарно касаться друг друга (в разных точках) не более n+2 n-1-мерных сфер.
n-мерная инверсия переводит n-1-мерную сферу в n-1-мерную сферу или гиперплоскость.