New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
序数 - Wikipedia

序数

维基百科,自由的百科全书

一般而言,序数是用来表示有序序列中位置的数,基数是用来表示“有多少数量”的数。序數對應於排列,如在以下句子中的「一」及「二」:“這人一不會打字,二不懂速記,所以不可以做秘書。”基數對應於量詞,例如在以下句子中的「一」及「四」:“有一個橙,有四個柑。”在某些如英語的語言中,基數 one, two, three 和序數 first, second, third 是不同的。

这里我们讨论超限序数的数学含义。它们是由格奥尔格·康托尔1897年引入,用来考虑无穷序列,并用来分类有着特定序结构的集合。序数不同于整数和基数,是自然数的一个扩展。

良序是一种允许超限归纳法全序,超限归纳法把通常的数学归纳法推广到无穷的情况。在以序同构为等价关系下的所有良序的等价类就是序数。每一个序数都是由更小的序数的集合构造而得。序数可以分成三类:后继序数极限序数(有着不同的共尾)。给定一类序数,我们可以确定出这个类的第α个成员,也即,我们可以在它上面计数。一个类是闭(closed)的并且是无界的,如果它的指标(indexing)函数是连续的且永不终止。我们可以在序数上定义加法、乘法和幂函数,但不能定义减法和除法。康托尔范式是序数的标准记录法。在序数和基数之间存在一个多对一的关系。人们可以定义越来越大的序数,但它们也越来越难于表述。序数有一个自然拓扑。

目录

[编辑] 序数扩展了自然数

可以用自然数来做两件事:描述一个集合的大小,或者描述序列中一个元素的位置。在有限的世界里这两个概念是一直的,当处理无限集合时人们不得不区分这两者。描述大小的做法把我们引向由康托尔发现的“基数”的概念,而描述位置的做法被推广到这里将要说明的序数的概念。

基数这一概念关联于在其上没有特殊结构的集合,而序数却同一种称为良序的特殊集合有着密切的关联(这种关联如此密切,以至于一些数学家不去区分这两个概念)。简单说来,一个良序集合是一个全序集合(任意给定两个元素,可以定义一个大的、一个小的),并且满足不存在无穷降链(然而可以有无穷升链)。序数可以用来标定任何给定的良序集的元素(最小的元素标定为 0,其后的标定为 1,再后的标定为 2,依此类推),同时也可以用来给出良序集的“长度”—没有用来标定良序集的最小的序数就是这个良序集的长度。这个“长度”也称为集合的序类型(order type)。

任何一个序数都是通过先于它的所有序数构成的集合来定义:实际上,序数最常见的定义就是把每个序数等同于先于它的所有序数构成的集合。比如,序数42就是比它小的序数的序类型,也即,我们把从 0(所有序数中最小的)到41(42最直接的先导)这些序数做成集合 {0,1,2,…,41},该集合就是序数42。相反的,任何下闭的(downward-closed)序数集合—意思是说,任何比该集合中一个序数小的序数都在该集合中—就是(或者等同于)一个序数。

目前为止,我们只考虑了有限的序数,也即自然数。但无限的序数也是存在的:最小的无限序数是 ω,它是自然数(有限序数)的序类型,或者等同于自然数集(实际上,自然数集是良序的—正如所有的序数集合一样—并且自然数集也是下闭的,所以它等同于一个序数,也就我们定义的 ω)。

ω²的“火柴杆”图形式表示,每个竖杆与一个形如“ω·m+n”的序数相对应(这里 m 和 n 是自然数)。
ω²的“火柴杆”图形式表示,每个竖杆与一个形如“ω·m+n”的序数相对应(这里 mn 是自然数)。

或许对序数更清晰的直觉可以通过检查最初的几个序数建立起来:如上所述,序数开始于自然数,0,1,2,3,4,5,…;然后在所有的自然数之后是第一个序数,ω,紧接其后的是 ω+1,ω+2,ω+3,等等(加号的确切含义将会在后面给出,这里你只需要把它看作名字就可以了)。在这些之后就是 ω·2(也即ω+ω),ω·2+1,ω·2+2,等等,紧接着是ω·3,然后是后来的ω·4。我们通过这种方式形成的序数集合(形如“ω·m+n”的序数,这里 mn 是自然数)其后一定还有一个序数:即 ω2。更进一步,我们可以得到 ω3,ω4,等等,以及 ωω和其后的 ωω²,乃至其后很多的 ε0(这只是给出了几个最小—可数—的序数)。我们可以按照如上方式无限的进行下去。

[编辑] 定义

[编辑] 良序集定义

良序集合是在其中所有子集都有一个最小元素的有序集合: 这个等价于(至少在依赖选择公理在场下)说这个集合是全序的并且没有无限递减序列,有时它可能易于可视化。在实践中,良序的重要性是通过应用超限归纳法来证实,它在本质上声称从一个元素的前驱者传递到这个元素自身的任何性质必定对(给定良序集合的)所有元素为真。如果一个计算(计算机程序或游戏)的状态可以是良序的,即在每一个步骤都跟随着“更低”的步骤的方式下,则你可以确定这个计算会终止。

现在我们不想区分两个良序集合,如果它们只是在“它们元素的标记”上不同,或者更加形式的说: 如果我们可以对第一个集合的元素配对第二个集合的元素,使得如果在第一个集合中一个元素小于另一个元素,则在第二个集合中第一个元素的配对者也小于第二个元素的配对者,反之亦然。这种一一对应叫做序同构(或严格的递增函数)而这两个有序集合被称为序同构的,或相似的(明显的这是一个等价关系)。假定在两个有序集合之间存在一个序同构,这个序同构是唯一的: 这使得考虑集合为本质上同一的,并寻求同构类型(类)的“规范”代表是很合理的。这完全是序数所提供的,并且它还提供任何良序集合的元素的规范标记(label)。

所以我们本质上希望定义序数为良序集合的同构类: 就是说,给“是序同构”的等价关系等价类。但是这涉及一个技术上的困难,事实上这个等价类在集合论的通常的 Zermelo-Fraenkel 形式化中作为集合而言太大了。但是这不是个严重的困难。我们称序数是在这个类中任何集合的序类型

[编辑] 以等价类来定义序数

序数的最初定义,例如在《数学原理》中定义良序排序的序类型为类似(序同构)于这个良序排序的所有良序排序的集合: 换句话说,一个序数真实的是良序集合的等价类。这个定义在 ZF 和相关的公理化集合论中必须抛弃,因为这些等价类对于形成一个集合而言太大了。但是这个定义,在类型论与蒯因的新基础集合论和有关系统中仍可使用(在这里它提供了对最大序数的Burali-Forti悖论的非常令人惊讶的可供替代的解决)。

[编辑] 序数的冯·诺伊曼定义

胜过定义序数为良序集合的等价类,我们可以尝试定义它为(规范的)表现这个类的某个特定良序集合。因此我们希望以所有良序集合都同构于一个且只是一个序数的方式,构造序数为特殊的良序集合。

冯·诺伊曼提议了精湛的定义,现在被作为了标准: 定义每个序数为特殊的良序集合,也就是在它之前的所有序数的集合。形式的说:

一个集合 S 是一个序数,当且仅当 S 是关于集合包含而全序的,并且所有 S 的元素也是 S 的子集。

(这里的“集合包含”是子集关系的另一个名字。) 这样的一个集合 S 自动的是关于集合包含而良序的。这依赖于良基公理: 所有非空集合 B 都有一个元素 b 不相交于 B

注意自然数是通过这个定义的序数。例如,2 是 4 = {0, 1, 2, 3} 的一个元素,而 2 等于 {0, 1} 因而它是 {0, 1, 2, 3} 的子集。

以下是自然數的集合論定義

0 = {} (空集)
1 = {0} = { {} }
2 = {0,1} = { {}, { {} } }
3 = {0,1,2} = {{}, { {} }, { {}, { {} } }}
4 = {0,1,2,3} = { {}, { {} }, { {}, { {} } }, {{}, { {} }, { {}, { {} } }} }

可見以此定義,自然數盡皆序數。事實上,所有有限序數都對應於某自然數。自然數集 N={0,1,2,3,...} 也是個序數,記作 ω,它是最小的無限序數!

可以证实通过超限归纳法所有良序集合都精确的同构于这些序数中的一个。

进一步的,所有序数的元素也是序数自身。当你有两个序数 ST 的时候,ST 的一个元素,当且仅当 ST 的真子集,此外要么 ST 的一个元素,要么 TS 的一个元素,要么它们是相等的。所以所有的序数集合都是全序的。事实上: 所有的序数集合都是良序的。 这个重要结果普遍化了所有的自然数集合是良序的的事实,并允许我们不受限制的通过序数使用超限归纳法

另一个推论是所有序数 S 都是完全由小于 S 的序数作为元素的一个集合。这个陈述完全确定了所有序数的依据其他序数的集合理论结构。它被用于证明关于序数的很多其他有用的结果。其中的一个例子是在序数间的次序关系的重要特征: 所有的序数集合都有一个上确界,这个序数是通过采用在这个集合中的所有序数的并集而获得的。另一个例子是所有序数的搜集不是集合的事实。因为所有序数只包含其他序数,可得出所有序数的搜集的的所有成员也是它的子集。所以,如果这个搜集是个集合,通过定义它自身将必定是个序数;那么它将是自身的成员,这矛盾于正规公理。(请参见Burali-Forti悖论)。所有序数的类被各异的叫做 "Ord"、"ON" 或 "∞"。

一个序数是有限的,当且仅当它的反(opposite)序也是良序的,即当且仅当它的所有子集都有最大元素

假設良序原則,所有集合都可加上良序關係。利用超窮遞歸可證明所有良序集都與某序數同構(即存在雙射使得 a>b ⇔ f(a)>f(b))。有限集合所有良序關係都是同構的,若有 n 個元素,對應序數就是 n。無限集合有無限的良序關係,如自然數集配以 0<2<4<...<1<3<5<... 對應的序數是 ω+ω。

注意,序數的元素必然是序數,而序數的子集亦必然是序數。兩個序數是可以比較大小,即會存在單射 f 使得 a>b ⇒ f(a)>f(b)。一個集合對應最小的序數,就是這集合的基數

[编辑] 其他的定义方式

还有序数定义的其他现代公式化。这些定义在本质等价于上面给出的定义。下面给出其中的一个。一个类 S 被称为传递性的,如果 S 的每个元素 xS 的子集,也就是 y \in x \in S \Longrightarrow y \in S。序数接着被定义为其成员也是传递的传递集合。从它得出成员们自身也是序数。注意使用了正规公理(基础公理)来证实这些序数通过包含(子集)是良序的。

[编辑] 超限归纳法

[编辑] 什么是超限归纳法?

超限归纳法在任何良序集合中成立,但是它与序数的关系如此重要而值得在这里重申。

从小于给定序数 α 的序数的集合传递来的传递到 α 自身的任何性质在所有序数上都为真。

就是说,如果 只要 P(β) 对所有 β<α 为真 P(α) 就为真,则 P(α) 对所有 α 都为真。或者更加实际的说: 为了证明性质 P 对所有序数 α 成立,你可以假定它对于所有 β<α 的更小的序数们为已知的。

[编辑] 超限递归

超限归纳不只能用来证明东西,而且还可以定义东西(这种定义通常被称为服从超限递归 - 我们使用超限归纳法证明这个结果是良好定义的): 形式陈述写起来太冗长,但是底线是为了定义在序数 α 上一个(类)函数,你可以假定它对所有 β<α 更小的序数们已经定义了。你可以通过超限归纳法证明有一个且只有一个函数满足直到并包括 α 的递归公式。

下面是通过在序数上超限归纳定义的一个例子(后面还会给出): 通过设 F(α) 是不在对于所有 β<αF(β) 的集合中的最小序数定义一个函数 F。注意我们如何假定 F(β) 在真正定义 F 的过程中是已知的: 这种外观上的悖论完全是超限归纳所有允许的。现在实际上 F(0) 没有意义因为没有 β<0,所以 β<0 的所有 F(β) 的集合是空集,所以 F(0) 必定是 0(所有序数中最小的),现在我们知道了 F(0),那么 F(1) 有意义(它是不等于F(0)=0 的最小序数),以此类推(“以此类推”完全就是超限归纳)。这个例子是非常有趣的因为对于所有序数 αF(α)=α: 而这可以通过超限归纳严格的证明。

[编辑] 后继与极限序数

任何非零序数都有一个最小元素(就是零)。但它可以有或没有最大元素: 42 或 ω+6 有最大元素,而 ω 没有(没有最大自然数)。如果一个序数有最大元素 α,则它是在 α 之后的下一个序数,它叫做后继序数,就是 α 的后继者,写做 α+1。在序数的冯·诺伊曼定义中,α 的后继者是 \alpha\cup\{\alpha\},因为它的元素是 α 的那些元素和 α 自身。

不是后继者的非零序数叫做极限序数。使用这个术语的一个理由是极限序数实际上是在拓扑意义上的所有更小序数的极限(参见序拓扑)。

相当一般的说,在 (αι<γ) 是一个序数序列(由极限 γ 标定的家族)的时候,并且如果我们假定 (αι) 是递增的 (αι<αι′ 只要 ι<ι′),或者至少非递减的,我们定义它的极限是集合 {αι} 的最小上界,就是说大于这个序列任何一项的最小序数(总是存在)。在这个意义上,极限序数是所有更小序数(由自身标定)的极限。

因此,所有序数要么是零,要么是一个后继者(有一个良好定义的前驱者),要么是极限。这个区别是重要的,因为很多通过超限归纳的定义依赖于它。经常出现在通过超限归纳在所有序数上定义一个函数 F 的时候,你定义 F(0),和 F(α+1),假定 F(α) 已定义了,并接着对极限序数 δ 定义 F(δ) 为对所有 β<δ 的极限 F(β)(要么在我们刚才解释了的序数极限的意义上,要么是某个其他极限概念,如果 F 不接受序数值的话)。所以,在这个定义中有价值的步骤是后继步骤,而不是极限序数。这种函数(特别是非递减和接受序数值的 F)被称为是连续的。我们将看到序数加法、乘法和指数作为它们的第二个参数的函数是连续的。

[编辑] 标定序数类

我们已经提到了任何良序集合都类似(序同构)于一个唯一的序数 α,或者换句话说,它的元素可以通过小于 α 的序数以递增的方式标定(index)。特别是这适用于任何的序数集合: 任何的序数集合都自然的通过小于某个 α 的序数来标定。对于序数的类(通过某个性质而定义的序数的搜集,可能对于形成一个集合太大了),带有稍微的修改同样成立: 任何的序数类可以用序数标定(并且在这个类是无界的时候,这使它处在与所有序数的类的类双射中)。所以我们可以自由的谈论在类中的第 γ 个元素(带有第“0”个是最小的,而第“1”个是次小的以此类推的约定)。形式上说,这个定义可通过超限归纳法: 一个类的第 γ 个元素被定义为(假定对于所有 β < γ 它已经定义了),对于所有 β < γ 的大于第 β 个元素的最小元素。

例如我们可以应用它于极限序数的类: 要么是极限要么是零的第 γ 个序数是 \omega\cdot\gamma (迄今为止我们还没有定义乘法但是我们可以使用这个符号作为临时定义,它符合后面定义的一般概念)。类似的,我们可以考虑“加法不可分解”的序数(意味着它是不能是两个严格更下的序数的的非零序数): 第 γ 个加法不可分解序数被标定为 ωγ。标定序数类的技术经常在不动点上下文中有用: 例如,使得 ωα = α 的第 γ 个序数被写为 \varepsilon_\gamma

[编辑] 闭无界集合与类

一个序数被称为是无界的或共尾的,当给定任何序数,总是有这个类的某个元素大于它的时候(则这个类必定是真类,就是说不能是集合)。它被称为是闭合的,当在这个类中序数的一个序列的极限再次在这个类中的时候: 或者等价的说,当标定(类-)函数 F 是连续的,在对于 δ 一个极限序数,F(δ) (在这个类中第 δ 个序数)是对于 γ < δ 所有 F(γ) 的极限的意义上;这在拓扑意义上对于序拓扑也是闭合的,(为了避免谈论在真类上的拓扑,你可能需要这个类与任何给定序数的交集在序数的序拓扑上是闭合的,这再次是等价的)。

Of particular importance are those classes of ordinals which are closed and unbounded, sometimes called clubs. For example, the class of all limit ordinals is closed and unbounded: this translates the fact that there is always a limit ordinal greater than a given ordinal, and that a limit of limit ordinals is a limit ordinal (a fortunate fact if the terminology is to make any sense at all!). The class of additively indecomposable ordinals, or the class of \varepsilon_\cdot ordinals, or the class of cardinals, are all closed unbounded; the set of regular cardinals, however, is unbounded but not closed, and any finite set of ordinals is closed but not unbounded.

A class is stationary if it has a nonempty intersection with every closed unbounded class. All superclasses of closed unbounded classes are stationary and stationary classes are unbounded, but there are stationary classes which are not closed and there are stationary classes which have no closed unbounded subclass (such as the class of all limit ordinals with countable cofinality). Since the intersection of two closed unbounded classes is closed and unbounded, the intersection of a stationary class and a closed unbounded class is stationary. But the intersection of two stationary classes may be empty, e.g. the class of ordinals with cofinality ω with the class of ordinals with uncountable cofinality.

Rather than formulating these definitions for (proper) classes of ordinals, we can formulate them for sets of ordinals below a given ordinal α: A subset of a limit ordinal α is said to be unbounded (or cofinal) under α provided any ordinal less than α is less than some ordinal in the set. More generally, we can call a subset of any ordinal α cofinal in α provided every ordinal less than α is less than or equal to some ordinal in the set. The subset is said to be closed under α provided it is closed for the order topology in α, i.e. a limit of ordinals in the set is either in the set or equal to α itself.

[编辑] 序數算術

关于此话题更进一步的细节,參見序數算術

There are three usual operations on ordinals: addition, multiplication, and (ordinal) exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set which represents the operation or by using transfinite recursion. The Cantor normal form provides a standardized way of writing ordinals. The so-called "natural" arithmetical operations retain commutativity at the expense of continuity.

[编辑] 序数与基数

[编辑] 基数的初始序数

Each ordinal has an associated cardinal, its cardinality, obtained by simply forgetting the order. Any well-ordered set having that ordinal as its order-type has the same cardinality. The smallest ordinal having a given cardinal as its cardinality is called the initial ordinal of that cardinal. Every finite ordinal (natural number) is initial, but most infinite ordinals are not initial. The axiom of choice is equivalent to the statement that every set can be well-ordered, i.e. that every cardinal has an initial ordinal. In this case, it is traditional to identify the cardinal number with its initial ordinal, and we say that the initial ordinal is a cardinal.

The α-th infinite initial ordinal is written ωα. Its cardinality is written \aleph_\alpha. For example, the cardinality of ω0 = ω is \aleph_0, which is also the cardinality of ω² or ε0 (all are countable ordinals). So (assuming the axiom of choice) we identify ω with \aleph_0, except that the notation \aleph_0 is used when writing cardinals, and ω when writing ordinals (this is important since \aleph_0^2=\aleph_0 whereas ω2 > ω). Also, ω1 is the smallest uncountable ordinal (to see that it exists, consider the set of equivalence classes of well-orderings of the natural numbers: each such well-ordering defines a countable ordinal, and ω1 is the order type of that set), ω2 is the smallest ordinal whose cardinality is greater than \aleph_1, and so on, and ωω is the limit of the ωn for natural numbers n (any limit of cardinals is a cardinal, so this limit is indeed the first cardinal after all the ωn).

[编辑] 共尾

The cofinality of an ordinal α is the smallest ordinal δ which is the order type of a cofinal subset of α. Notice that a number of authors define confinality or use it only for limit ordinals. The cofinality of a set of ordinals or any other well ordered set is the cofinality of the order type of that set.

Thus for a limit ordinal, there exists a δ-indexed strictly increasing sequence with limit α. For example, the cofinality of ω² is ω, because the sequence ω·m (where m ranges over the natural numbers) tends to ω²; but, more generally, any countable limit ordinal has cofinality ω. An uncountable limit ordinal may have either cofinality ω as does ωω or an uncountable cofinality.

The cofinality of 0 is 0. And the cofinality of any successor ordinal is 1. The cofinality of any limit ordinal is at least ω.

An ordinal which is equal to its cofinality is called regular and it is always an initial ordinal. Any limit of regular ordinals is a limit of initial ordinals and thus is also initial even if it is not regular which it usually is not. If the Axiom of Choice, then ωα + 1 is regular for each α. In this case, the ordinals 0, 1, ω, ω1, and ω2 are regular, whereas 2, 3, ωω, and ωω·2 are initial ordinals which are not regular.

The cofinality of any ordinal α is a regular ordinal, i.e. the cofinality of the cofinality of α is the same as the cofinality of α. So the cofinality operation is idempotent.

[编辑] 某些“大的”可数序数

关于此话题更进一步的细节,參見大可数序数。

We have already mentioned (see Cantor normal form) the ordinal ε0, which is the smallest satisfying the equation ωα = α, so it is the limit of the sequence 0, 1, ω, ωω, \omega^{\omega^\omega}, etc. Many ordinals can be defined in such a manner as fixed points of certain ordinal functions (the ι-th ordinal such that ωα = α is called \varepsilon_\iota, then we could go on trying to find the ι-th ordinal such that \varepsilon_\alpha = \alpha, “and so on”, but all the subtlety lies in the “and so on”). We can try to do this systematically, but no matter what system is used to define and construct ordinals, there is always an ordinal that lies just above all the ordinals constructed by the system. Perhaps the most important ordinal which limits in this manner a system of construction is the Church-Kleene ordinal, \omega_1^{\mathrm{CK}} (despite the ω1 in the name, this ordinal is countable), which is the smallest ordinal which cannot in any way be represented by a computable function (this can be made rigorous, of course). Considerably large ordinals can be defined below \omega_1^{\mathrm{CK}}, however, which measure the “proof-theoretic strength” of certain formal systems (for example, \varepsilon_0 measures the strength of Peano arithmetic). Large ordinals can also be defined above the Church-Kleene ordinal, which are of interest in various parts of logic.

[编辑] 拓扑与序数

[编辑] 序数作为拓扑空间

Any ordinal can be made into a topological space by endowing it with the order topology (since, being well-ordered, an ordinal is in particular totally ordered): in the absence of indication to the contrary, it is always that order topology which is meant when an ordinal is thought of as a topological space. (Note that if we are willing to accept a proper class as a topological space, then the class of all ordinals is also a topological space for the order topology.)

The set of limit points of an ordinal α is precisely the set of limit ordinals less than α. Successor ordinals (and zero) less than α are isolated points in α. In particular, the finite ordinals and ω are discrete topological spaces, and no ordinal beyond that is discrete. The ordinal α is compact as a topological space if and only if α is a successor ordinal.

The closed sets of a limit ordinal α are just the closed sets in the sense that we have already defined, namely, those which contain a limit ordinal whenever they contain all sufficiently large ordinals below it.

Any ordinal is, of course, an open subset of any further ordinal. We can also define the topology on the ordinals in the following inductive way: 0 is the empty topological space, α+1 is obtained by taking the one-point compactification of α (if α is a limit ordinal; if it is not, α+1 is merely the disjoint union of α and a point), and for δ a limit ordinal, δ is equipped with the inductive limit topology.

As topological spaces, all the ordinals are Hausdorff and even normal. They are also totally disconnected (connected components are points), scattered (=every non-empty set has an isolated point; in this case, just take the smallest element), zero-dimensional (=the topology has a clopen basis: here, write an open interval (β,γ) as the union of the clopen intervals (β,γ'+1)=[β+1,γ'] for γ'<γ). However, they are not extremally disconnected in general (there is an open set, namely ω, whose closure is not open).

The topological spaces ω1 and its successor ω1+1 are frequently used as text-book examples of non-countable topological spaces. For example, in the topological space ω1+1, the element ω1 is in the closure of the subset ω1 even though no sequence of elements in ω1 has the element ω1 as its limit. The space ω1 is first-countable, but not second-countable, and ω1+1 has neither of these two properties, despite being compact. It is also worthy of note that any continuous function from ω1 to R (the real line) is eventually constant: so the Stone-Čech compactification of ω1 is ω1+1, just as its one-point compactification (in sharp contrast to ω, whose Stone-Čech compactification is much larger than ω1).

[编辑] 以序数为指标的序列

If α is a limit ordinal and X is a set, an α-indexed sequence of elements of X merely means a function from α to X. If X is a topological space, we say that an α-indexed sequence of elements of X converges to a limit x when it converges as a net, in other words, when given any neighborhood U of x there is an ordinal β<α such that xι is in U for all ι≥β. This coincides with the notion of limit defined above for increasing ordinal-indexed sequences in an ordinal.

Ordinal-indexed sequences are more powerful than ordinary (ω-indexed) sequences to determine limits in topology: for example, ω1 is a limit point of ω1+1 (because it is a limit ordinal), and, indeed, it is the limit of the ω1-indexed sequence which maps any ordinal less than ω1 to itself: however, it is not the limit of any ordinary (ω-indexed) sequence in ω1, since any function from the natural numbers to ω1 is bounded. However, ordinal-indexed sequences are not powerful enough to replace nets (or filters) in general: for example, on the Tychonoff plank (the product space (\omega_1+1)\times(\omega+1)), the corner point 1,ω) is a limit point (it is in the closure) of the open subset \omega_1\times\omega, but it is not the limit of an ordinal-indexed sequence.

[编辑] 参见

[编辑] 参考资料

  • Conway, J. H. and Guy, R. K. "Cantor's Ordinal Numbers." In The Book of Numbers. New York: Springer-Verlag, pp. 266-267 and 274, 1996.
  • Sierpiński, W. (1965). Cardinal and Ordinal Numbers (2nd ed.). Warszawa: Państwowe Wydawnictwo Naukowe. Also defines ordinal operations in terms of the Cantor Normal Form.
  • Patrick Suppes, Axiomatic Set Theory, D.Van Nostrand Company Inc., 1960

[编辑] 站外链接

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu