Vzdálenost
Z Wikipedie, otevřené encyklopedie
Vzdálenost je výraz pro odlehlost dvou bodů (nebo útvarů) a pro vyjádření jejich vzájemné polohy. Ve fyzice zpravidla označuje prostorovou nebo časovou odlehlost věcí, v matematice však musí splňovat více kritérií.
Obsah |
[editovat] Matematické zavedení
[editovat] Obecný případ
V matematické analýze je vzdálenost funkce ρ: M x M -> R definovaná na dané množině M splňující následující vlastnosti:
- Každým dvěma bodům z množiny M je přiřazena vzdálenost.
- Je pozitivně definitní. ρ(x,y) ≥ 0, příčemž ρ(x,y) = 0 právě když x = y. (Vzdálenost je vždy kladná jsou-li dané body různé, jsou-li stejné, je nulová).
- Je symetrická. ρ(x,y) = ρ(y,x). (Vzdálenost z x do y je stejná jako z y do x).
- Splňuje trojúhelníkovou nerovnost, ρ(x,z) ≤ ρ(x,y) + ρ(y,z). (Vzdálenost dvou bodů není nikdy vyšší, než součet vzdáleností do třetího bodu od bodu prvního a od bodu druhého).
Takovouto funkci nazýváme metrika. Dvojice (M,ρ) se nazývá metrický prostor.
Vzdálenost je definována i pro dva geometrické útvary (např. bod a přímka, přímka a rovina). Vzdálenost 2 útvarů se rovná nejmenší vzdálenosti 2 bodů, kde jeden bod patří jednomu útvaru a druhý bod druhému. Proto ji měříme na kolmici.
[editovat] Dráha
Ve fyzice označuje dráha délku trajektorie, kterou těleso (hmotný bod) urazí za určitou dobu. Dráha je tedy vzdálenost, kterou těleso (hmotný bod) urazí mezi dvěma časovými okamžiky a měří se podél trajektorie. Dráha je charakteristikou mechanického pohybu.
Uvažujeme-li těleso (hmotný bod) pohybující se po zvolené trajektorii, pak je dráha mezi dvěma body na této trajektorii vždy větší nebo rovna nejkratší vzdálenosti těchto bodů (dráha je rovna této vzdálenosti v případě přímočaré trajektorie).
Dráhu obvykle značíme s a měříme v metrech.