Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Solow-Modell - Wikipedia

Solow-Modell

aus Wikipedia, der freien Enzyklopädie

Das Solow-Modell ist ein volkswirtschaftliches Modell zur Erklärung des langfristigen Wachstums einer Volkswirtschaft. Die zentrale Aussage des Solow-Modells ist, dass für dauerhaftes Wirtschaftswachstum langfristig nur das Tempo des technischen Fortschritts von Bedeutung ist. Wachstumspolitik kann folglich auf lange Sicht nur erfolgreich sein, wenn sie den technischen Fortschritt begünstigt. Das Modell wurde von Robert Merton Solow (1956) und Trevor Swan (1956) entwickelt.

Es ist ein wichtiger Bestandteil der neoklassischen Wachstumstheorie und entwickelte sich aus der Kritik heraus, dass die Determinaten des Wirtschaftswachstums z. B. im Harrod-Domar-Modell nicht betrachtet wurden. Bei Harrod und Domar werden auch die komplementär zum Kapital benötigten Güter wie die Arbeitskraft ausgeklammert bzw. das "natürliche" Wachstum des Arbeitsangebotes wird exogen angenommen und das Wirtschaftswachstum hat sich dem z. B. über die Sparquote anzupassen.

Inhaltsverzeichnis

[Bearbeiten] Herleitung des Solow-Modells

Das Solow-Modell erklärt Wachstum als Folge aus Arbeits-, Kapital- und Technologie-Einsatz in einer Volkswirtschaft. Die zentrale Annahme ist, dass Wachstum langfristig gegen ein Gleichgewicht konvergiert, in dem die Investitionen in den Kapitalstock gleich den Abschreibungen aus dem Kapitalstock sind. Das ist eine plausible Annahme, da in diesem Gleichgewicht die ausrangierten Maschinen gerade durch neue ersetzt werden. Daraus ergibt sich, dass die Volkswirtschaft wächst, wenn die Investitionen größer sind als die Abschreibungen und dass sie schrumpft, wenn die Investitionen geringer sind als die Abschreibungen.

Weitere Annahmen werden insofern getroffen, dass der Pro-Kopf Kapitalstock bei einem steigenden Bevölkerungswachstum sinkt, da das gesamte vorhandene Einkommen auf mehr Köpfe verteilt werden muss. Außerdem wird eine Rate des technischen Fortschritts in der Volkswirtschaft angegeben, die den vorhandenen Kapitalstock veralten lässt.

Das Modell kommt zu dem Ergebnis, dass das Wachstum einer jeden Volkswirtschaft gegen einen langfristig gegebenen Punkt konvergiert, der durch die Investitionen in der Volkswirtschaft, die konstante Abschreibungsrate, das Bevölkerungswachstum und die Rate des technologischen Fortschritts bestimmt wird. Damit die Volkswirtschaft langfristig wächst muss technologischer Fortschritt vorhanden sein.

[Bearbeiten] Mathematische Beschreibung des Solow-Modells

Mathematisch wird für die Berechnung des Solow-Modells eine Cobb-Douglas-Funktion zur Hilfe genommen, die den volkswirtschaftlichen Output wie folgt beschreibt:

\mathbf{Y = A * F(K,L) = A * K^\alpha * (L)^{1-\alpha}}

Dabei hat die Produktionsfunktion konstante Skalenerträge (Homogenitätsgrad = 1).

Die Gleichung für das Solow-Modell wird durch eine Reihe von Umformungen und Annahmen erreicht. So wird die Outputfunktion als Pro-Kopf-Einkommen umgeschrieben:

\mathbf{\frac{Y}{L} = \left(\frac{K}{L}\right)^\alpha} \Leftrightarrow y = k^\alpha = f(k)


Es wird angenommen, dass es eine Sparquote s gibt, die den Anteil des Pro-Kopf Einkommens beschreibt der gespart (und damit investiert) wird, eine Abschreibungsrate \mathbf{\delta}, die den Verfall des vorhandenen Kapitalstocks erfasst, das Bevölkerungswachstum n und die Rate des technologischen Fortschritts g.

Im langfristigen Gleichgewicht (Steady state-Niveau der Volkswirtschaft) muss gelten, dass die Investitionen gleich den Abschreibungen plus dem Bevölkerungswachstum und der Rate des technologischen Fortschritts ist (ein Ergebnis, das auch dem Harrod-Domar-Modell entspricht):

\mathbf{s*f(k) = (\delta + n + g) * k}
\mathbf{\Leftrightarrow s*f(k) - (\delta + n + g) * k = 0}

Dabei sei zu beachten, dass es sich im Solow-Modell um eine geschlossene Volkswirtschaft handelt, d.h. es werden keine Wirtschaftsbeziehungen mit dem Ausland im Modell berücksichtigt.

[Bearbeiten] Goldene Regel der Kapitalakkumulation

Die Goldene Regel der Akkumulation beschreibt diejenige Sparquote in einer Volkswirtschaft, durch die der Konsum maximiert wird. Mathematisch ergibt sich die optimale Sparquote als Ableitung der Bewegungsgleichung des Solow-Modells nach der Variable k.

[Bearbeiten] Entwicklung der Theorie

Robert Solow konnte 1957 die empirische Evidenz des Solow-Modells anhand von Wachstumsdaten der USA nachweisen. Dazu benutzte er methodisch die sog. Solow-Residuen, auch als totale Faktorproduktivität bezeichnet, um den Anteil des technologischen Fortschritts aus dem Gesamtwachstum eines Jahres auszumachen. Es stellte sich heraus, dass der größte Anteil des jährliches Wachstums nicht auf Arbeit- oder Kapitalfaktoren sondern auf den technologischen Fortschritt zurückzuführen ist.

[Bearbeiten] Kritik an der Theorie und Weiterentwicklung

Das Solow-Modell wird seit den 80er Jahren, vor allen von den Verfechtern des endogenen Wachstums, kritisiert. Im Zentrum der Kritik stand die Konvergenz des Wachstums einer Volkswirtschaft im Solow-Modell. Dies bedeutet, dass ärmere Volkswirtschaften langfristig zu den wohlhabenderen aufschließen, da sie ohne größere Mühen schneller wachsen können. Diese Konvergenz konnte aber nicht in allen Volkswirtschaften nachgewiesen werden. Zu den Fällen konvergierenden Wachstums gehören vor allem die Marktwirtschaften aus Europa, Nordamerika und – bis zu den Finanzkrisen in den 90er Jahren – die sog. Tigerstaaten aus Südostasien. Zudem sind die berechneten Konvergenzgeschwindigkeiten zu hoch und das Modell liefert nur brauchbare Ergebnisse für das 20. Jahrhundert. Geht man weiter zurück haben die Ergebnisse keine Signifikanz mehr.

Ein weiterer Kritikpunkt ist der Fakt, dass im Solow-Modell der technologische Fortschritt als einziger Faktor langfristigen Wachstums genannt wird, das Modell aber nicht erklärt wie dieser zustande kommt. Technologischer Fortschritt wird als exogen gegeben angesehen und daher nicht durch das Modell erklärt.

Die Kritik am exogenen technologischen Fortschritt greift die Endogene Wachstumstheorie auf. Um die weiteren oben genannten Kritikpunkte am Solow-Modell auszuräumen haben Mankiw, Romer und Weil 1992 eine überarbeitete Fassung des Modells veröffentlicht, die den Faktor Humankapital und Bildung mit in die Berechnung des Wachstums einbezieht. Die Probleme fehlender Konvergenz und übertriebener Konvergenzgeschwindigkeiten werden dadurch genau erklärt.

Schließlich wurde das Solow-Modell als Ein-Gut-Parabel kritisiert. Einige Ergebnisse des Modells lassen sich nicht verallgemeinern, wenn man von der (unausgesprochenen) Annahme einer Volkswirtschaft, die nur ein Gut "Y" produziert, das dann als Konsum- ("C") oder Investitionsgut ("I") eingesetzt werden kann, zu der wirklichkeitsnäheren Annahme einer Volkswirtschaft, in der "Waren mittels Waren" hergestellt werden (Piero Sraffa), übergeht.

[Bearbeiten] Literatur

  • Robert Merton Solow: „A Contribution to the Theory of Economic Growth“ in Quarterly Journal of Economics Band 70, 1956, S. 65-94
    • deutsche Übersetzung: König, H. (Hrsg.): „Ein Beitrag zur Theorie des wirtschaftlichen Wachstums“ in Wachstum und Entwicklung der Wirtschaft, Köln, 1968, S. 67-96


[Bearbeiten] Siehe auch

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu