New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Transformada de Laplace - Wikipedia, la enciclopedia libre

Transformada de Laplace

De Wikipedia, la enciclopedia libre

La Transformada de Laplace de una función f(t) definida (en matemáticas y, en particular, en análisis funcional) para todos los números reales t ≥ 0 es la función F(s), definida por:

F(s)   = \mathcal{L} \left\{f(t)\right\}   =\int_{0}^\infty e^{-st} f(t)\,dt.

siempre y cuando la integral esté definida.

Esta transformada integral tiene una serie de propiedades que la hacen útil en el análisis de sistemas lineales. Una de las ventajas más significativas radica en que la integración y derivación se convierten en multiplicación y división. Esto transforma las ecuaciones diferenciales e integrales en ecuaciones polinómicas, mucho más fáciles de resolver.

Otra aplicación importante en los sistemas lineales es el cálculo de la señal de salida. Ésta se puede calcular mediante la convolución de la respuesta impulsiva del sistema con la señal de entrada. La realización de este cálculo en el espacio de Laplace convierte la convolución en una multiplicación, habitualmente más sencilla.

La transformada de Laplace toma su nombre en honor de Pierre-Simon Laplace.

Cuando se habla de la transformada de Laplace, generalmente se refiere a la versión unilateral. También existe la transformada de Laplace bilateral, que se define como sigue:

F_B(s)   = \left\{\mathcal{L} f\right\}(s)   =\int_{-\infty}^{\infty} e^{-st} f(t)\,dt.

La transformada de Laplace F(s) típicamente existe para todos los números reales s > a, donde a es una constante que depende del comportamiento de crecimiento de f(t).


Tabla de contenidos

[editar] Propiedades

[editar] Linealidad

\mathcal{L}\left\{a f(t) + b g(t) \right\}   = a \mathcal{L}\left\{ f(t) \right\} +     b \mathcal{L}\left\{ g(t) \right\}

[editar] Potencia n-ésima

\mathcal{L}\{\,t^n\} = \frac {n!}{s^{n+1}}

Nota: en la demostración aparece la función Gamma, tener presente esto

[editar] Seno

\mathcal{L}\{\,\mbox{sen}(\omega t)\} = \frac {\omega}{s^2 + \omega ^2}

[editar] Coseno

\mathcal{L}\{\,\cos(\omega t)\} = \frac {s}{s^2 + \omega^2}

[editar] Seno hiperbólico

\mathcal{L}\{\,\mbox{senh}(bt)\} = \frac {b}{s^2-b^2}

[editar] Coseno hiperbólico

\mathcal{L}\{\,\cosh(Wt)\} = \frac {s}{s^2 - W^2}

[editar] Logaritmo natural

\mathcal{L}\{\,\ln(t)\} = - \frac{\ln(t)+\gamma}{s}

[editar] Raíz n-ésima

\mathcal{L}\{\,\sqrt[n]{t}\} = s^{-\frac{n+1}{n}} \cdot \Gamma\left(1+\frac{1}{t}\right)

[editar] Función de Bessel de primera especie

\mathcal{L}\{\,J_n(t)\} = \frac{\left(s+\sqrt{1+s^2}\right)^{n}}{\sqrt{1+s^2}}

[editar] Función modificada de Bessel de primera especie

\mathcal{L}\{\,I_n(t)\} = \frac{\left(s+\sqrt{-1+s^2}\right)^{-n}}{\sqrt{-1+s^2}}

[editar] Función de error

\mathcal{L}\{\,\operatorname{erf}(t)\} = {e^{s^2/4} \operatorname{erfc} \left(s/2\right) \over s}

[editar] Derivación

\mathcal{L}\{f'(t)\}   = s \mathcal{L}\{f(t)\} - f(0)
\mathcal{L}\{f''(t)\}   = s^2 \mathcal{L}\{f(t)\} - s f(0) - f'(0)
\mathcal{L}\left\{ f^{(n)}(t) \right\}   = s^n \mathcal{L}\{f(t)\} - s^{n - 1} f(0) - \cdots - f^{(n - 1)}(0)
\mathcal{L}\left\{ f^{(n)}(t) \right\}   = s^n \mathcal{L}\{f(t)\} - \sum_{i=1}^{n} s^{n - i} f^{(i - 1)}(0)
\mathcal{L}\{ t f(t)\}   = -F'(s)
\mathcal{L}\left\{ \frac{f(t)}{t} \right\} = \int_s^\infty F(s)\, d(s)

NT: en la demostración recordar que e st debe crecer más rápidamente que la función, y así calcular su límite lim(f(t) / e st,t = 0..infinto) (el cual seria cero, sino no habría como calcular) es por esto que funciones del tipo \mathcal{L}\{f(e^{t^2})) (que crece más rápido que e st) no pueden ser obtenidas por Laplace, ya que e^{t^2}, no es una función de orden exponencial.

[editar] Integración

\mathcal{L}\left\{ \int_0^t f(\tau)\, d\tau \right\}   = {1 \over s} \mathcal{L}\{f\}

F(w)=(cosw)

[editar] Desplazamiento de la frecuencia

\mathcal{L}\left\{ e^{-at} f(t) \right\} =   F(s+a)

[editar] Desplazamiento temporal en t

\mathcal{L}\left\{ f(t - a) u(t - a) \right\}   = e^{-as} F(s)
\mathcal{L}^{-1} \left\{ e^{-as} F(s) \right\}   = f(t - a) u(t - a)

Nota: u(t) es la función escalón unitario.

[editar] Desplazamiento potencia n-ésima

\mathcal{L}\{\,t^nf(t)\} = (-1)^nD_s^n[F(s)]

[editar] Convolución

\mathcal{L}\{f * g\}   = \mathcal{L}\{ f \} \mathcal{L}\{ g \}

[editar] Transformada de Laplace de una función con periodo p

\mathcal{L}\{ f \}   = {1 \over 1 - e^{-ps}} \int_0^p e^{-st} f(t)\,dt

[editar] Otras transformadas comunes

Transformada de Laplace Función en el tiempo
1 δ(t)
\frac{1}{s} u(t) (función escalón unitario)
\frac{1}{(s+a)^n} \frac{t^{n-1}}{(n-1)!}e^{-at}
\frac{1}{s(s+a)} \frac{1}{a}(1-e^{-at})
\frac{1}{(s+a)(s+b)} \frac{1}{b-a}\left(e^{-at}-e^{-bt}\right)
\frac{s+c}{(s+a)^2+b^2} e^{-at}\left(\cos{(bt)}+\left(\frac{c-a}{b}\right)\mbox{sen}{(bt)}\right)
\frac{\mbox{sen}\varphi s+a\cos\varphi}{s^2+a^2} \mbox{sen}{(at+\varphi)}

[editar] Tabla de las transformadas de Laplace selectas

La siguiente tabla provee la mayoría de las transformaciones de Laplace para funciones de una sola variable.

Debido a que la transformada de Laplace es un operador lineal:

La transformada de Laplace es la de la suma de la transformada de Laplace de cada término.

\mathcal{L}\left\{f(t) + g(t) \right\}  = \mathcal{L}\left\{f(t)\right\} + \mathcal{L}\left\{ g(t) \right\}


\mathcal{L}\left\{a f(t)\right\}  = a \mathcal{L}\left\{ f(t)\right\}

La transformada de Laplace es únicamente válida cuando t es mayor a 0 , lo que explica por qué en la tabla de abajo todo es multiplo de u(t). Aquí está una lista de las transformadas más comunes:

ID Función Dominio en el tiempo
x(t) = \mathcal{L}^{-1} \left\{ X(s) \right\}
Dominio en la frecuencia
X(s) = \mathcal{L}\left\{ x(t) \right\}
Región de la convergencia
para sistemas causales
1 retraso ideal \delta(t-\tau) \ e^{-\tau s} \
1a impulso unitario \delta(t) \ 1 \ \mathrm{todo} \  s \,
2 enésima potencia retrasada y con
desplazamiento en la frecuencia
\frac{(t-\tau)^n}{n!} e^{-\alpha (t-\tau)} \cdot u(t-\tau) \frac{e^{-\tau s}}{(s+\alpha)^{n+1}} s > 0 \,
2a enésima potencia {  t^n \over n! } \cdot u(t) { 1 \over s^{n+1} } s > 0 \,
2a.1 qth power {  t^q \over \Gamma(q+1) } \cdot u(t) { 1 \over s^{q+1} } s > 0 \,
2a.2 escalón unitario u(t) \ { 1 \over s } s > 0 \,
2b escalón unitario con retraso u(t-\tau) \ { e^{-\tau s} \over s } s > 0 \,
2c Rampa t \cdot u(t)\ \frac{1}{s^2} s > 0 \,
2d nth power with frequency shift \frac{t^{n}}{n!}e^{-\alpha t} \cdot u(t) \frac{1}{(s+\alpha)^{n+1}} s > - \alpha \,
2d.1 amortiguación exponencial e^{-\alpha t} \cdot u(t)  \ { 1 \over s+\alpha } s > - \alpha \
3 convergencia exponencial ( 1-e^{-\alpha t})  \cdot u(t)  \ \frac{\alpha}{s(s+\alpha)} s > 0\
4 seno \sin(\omega t) \cdot u(t) \ { \omega \over s^2 + \omega^2  } s > 0  \
5 coseno \cos(\omega t) \cdot u(t) \ { s \over s^2 + \omega^2  } s > 0 \
6 seno hiperbólico \sinh(\alpha t) \cdot u(t) \ { \alpha \over s^2 - \alpha^2 } s > | \alpha | \
7 coseno hiperbólico \cosh(\alpha t) \cdot u(t) \ { s \over s^2 - \alpha^2  } s > | \alpha | \
8 onda senoidal con
amortiguamiento exponencial
e^{-\alpha t}  \sin(\omega t) \cdot u(t) \ { \omega \over (s+\alpha )^2 + \omega^2  } s > -\alpha \
9 onda cosenoidal con
amortiguamiento exponencial
e^{-\alpha t}  \cos(\omega t) \cdot u(t) \ { s+\alpha \over (s+\alpha )^2 + \omega^2  } s > -\alpha \
10 raíz n-ésima \sqrt[n]{t} \cdot u(t) s^{-(n+1)/n} \cdot \Gamma\left(1+\frac{1}{n}\right) s > 0 \,
11 logaritmo natural \ln \left (  { t \over t_0 } \right ) \cdot u(t) - { t_0 \over s} \  [ \  \ln(t_0 s)+\gamma \ ] s > 0 \,
12 Función de Bessel
de primer tipo,
de orden n
J_n( \omega t) \cdot u(t) \frac{ \omega^n \left(s+\sqrt{s^2+ \omega^2}\right)^{-n}}{\sqrt{s^2 + \omega^2}} s > 0 \,
(n > -1) \,
13 Función de Bessel modificada
de primer tipo,
de orden n
I_n(\omega t) \cdot u(t) \frac{ \omega^n \left(s+\sqrt{s^2-\omega^2}\right)^{-n}}{\sqrt{s^2-\omega^2}} s > | \omega | \,
14 Función de Bessel
de segundo tipo,
de orden 0
Y_0(\alpha t) \cdot u(t)    
15 Función de Bessel modificada
de segundo tipo,
de orden 0
K_0(\alpha t) \cdot u(t)    
16 Función de error \mathrm{erf}(t) \cdot u(t) {e^{s^2/4} \operatorname{erfc} \left(s/2\right) \over s} s > 0 \,
Notas explicativas:
  • Un sistema causal es un sistema donde la respuesta al impulso h(t) es cero para todo tiempo t anterior a t = 0. En general, el ROC para sistemas causales no es el mismo que el ROC para anticausal systems. See also causality.

[editar] Relación con otras transformadas

La transformada de Laplace está estrechamente relacionada con la Transformada de Fourier y la Transformada Z.

[editar] Enlaces externos

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu