Tensori
Wikipedia
Tensori on matematiikassa tietyn tyyppinen geometrinen kokonaisuus, tai vaihtoehtoisesti yleinen suure. Tensorin käsitteessä yhdistyvät skalaarilla kertominen, vektoriavaruudet ja lineaarioperaatiot. Tensorit voidaan kirjoittaa koordinaatistojen avulla tai taulukkoesityksen muodossa, mutta ne on määritelty esitystavasta riippumatta. Ne ovat ns. multilinearikuvauksia vektoriavaruudelta kerroinkunnalle.
Tensorit on määritelty siten että niiden ominaisuudet säilyvät koordinaatistojen tavallisissa muunnoksissa. Tästä seuraa että tensorit ovat tärkeitä fysiikassa ja teknisillä aloilla. Erityisesti niihin törmää yleisessä suhteellisuusteoriassa ja hydrodynamiikassa. Tensorilaskennan tutkiminen muodostaa osan ns. multilineaarisesta algebrasta.
[muokkaa] Tensorin klassinen määrittely
Tensorin määrittely suureena, joka muuntuu mielivaltaisessa koordinaatistomuunnoksessa (koordinaatistomuunnos on vaikkapa muunnos karteesisesta koordinaatistosta pallokoordinaatistoon) tietyllä tavalla on usein käytännöllinen ja havainnnollinen. Se myös näyttää hyvin, mikä ero on tensorilla ja skalaarilla. Tässä lähestymistavassa uudet (siis muunnoksen jälkeiset) koordinaatit merkitään yläviivalla (), ja alkuperäiset koordinaatit ilman viivaa (
). Einsteinin summaussääntöä käyttäen:
Yleinen tensori voidaan kirjoittaa muodossa
,
missä ylemmät indeksit [i1,i2,i3,...in] ovat tensorin kontravariantit komponentit ja alaindeksit [j1,j2,j3,...jm] sen kovariantit komponentit. Tensorin indeksien lukumäärä kertoo kontra- ja kovarianttien komponettien lukumäärän. Yllä T:llä on n kontra- ja m kovarianttia komponenttia. Erityisesti, jos tensorilla on vain jompia kumpia indeksejä, puhutaan kertaluvusta. Esimerkiksi tensori
on toisen kertaluvun kontravariantti tensori. Yleisessä koordinaatistomuunnoksessa se muuntuu
Vastaavasti esimerkiksi kolmannen kertaluvun kovariantti tensori muuntuu
Nämä muunnoskaavat yleistyvät suoraan sekatensoreille. Esimerkiksi tensori, jolla on yksi ko- ja kaksi kontravarianttia komponettia muuntuu luonnollisesti
Tensori siis säilyttää aina muotonsa, mikä tekee niistä ilmaisuvoimaisen työkalun erilaisissa tilanteissa. Erityisesti kannattaa huomata, että tapauksessa, jossa indeksejä on vain yksi, tensorin määritelmät yhtyvät vastaavan vektorin muunnoskaavoihin. Vektorit ovat siis ensimmäisen kertaluvun tensoreita. Jos indeksejä ei ole yhtään, kaikki derivaatat häviävät eikä koordinaatistomuunnos muuta suuretta lainkaan. Tällöin kyseessä on skalaari.
[muokkaa] Katso myös
[muokkaa] Aiheesta muualla
- NASAn julkaisema johdanto tensoreihin fysiikan ja teknillisten alojen opiskelijoille (PDF) (englanniksi)
- Johdanto tensoreihin ja yleiseen suhteellisuusteoriaan (englanniksi)