미토콘드리아
위키백과 ― 우리 모두의 백과사전.
미토콘드리아는 진핵생물의 세포소기관 중 하나로 세포호흡이 일어나는 곳이다. 생명유지에 필요한 ATP를 생산한다.
미토콘드리아 (Mitochondria(단수형:mitochondrion), 고대 그리스어 mitos: 끈 + chondros: 낱알)는 아래의 미토콘드리아 모식도에서 잘 나타나 있듯이 겉모양이 낱알을 닮고 내부 구조가 마치 끈을 말아 놓은 것 같다고 하여 붙여진 이름이다. 세포생물학[1][1]에서 미토콘드리아는 진핵생물의 세포 안에 있는 중요한 세포소기관이다.
기본적인 기능이 여러 유기물질에 저장된 에너지를 산화적 인산화과정을 통하여 생명활동에 필요한 아데노신삼인산의 형태로 변환하기 때문에 미토콘드리아는 세포의 발전소라고 할 수 있다. 보통 미토콘드리아는 세포의 25%의 세포질을 차지하고 있으나 그 크기와 수가 세포의 종류와 역할에 따라 다양하다. 자체적인 DNA(mtDNA:mitochondirial DNA)를 가지고 있다. 자체적인 DNA의 존재와 이중막구조는 미토콘드리아 뿐만 아니라 엽록체에서도 나타나는 것으로 오래 전 세균에 의한 세포공생의 결과로 진핵생물의 탄생이 이루어진 데서 유래한 것으로 여겨진다[2].
목차 |
[편집] 구조
미토콘드리아는 세포막과 같은 단백질을 포함하고 있는 인지질 이중층으로 이루어진 내막과 외막을 가지고 있다. 외막과 내막의 기능은 각각 다르다.
[편집] 외막
외막은 미토콘드리아 전체를 감싸고 있으며 무게 기준으로 인지질과 단백질이 반반씩 구성하고 있다. 외막에는 포린(porin) (2-3nm 정도 크기의 비교적 큰 내재성단백질(integral proteins))이 많이 있는데 이 포린은 5000D(달톤)이하인 분자가 투과할 수 있는 통로(channel)이다.[Alberts, 1994] 5000D보다 큰 분자들은 능동수송에 의해서만 외막을 통과할 수 있다. 지방산의 탄화수소부분의 합성/신장, 에피네프린(아드레날린)의 산화, 트립토판의 분해 등의 기능에 관련된 다양한 효소들이 이러한 능동수송 과정에 작용한다.
[편집] 내막
내막은 4가지 종류의 기능을 가진 단백질(효소)를 가지고 있다.[Alberts, 1994]:
- 산화효소: 세포호흡
- ATP 생성효소:ATP생성
- 내막 안팎으로의 대사물질운송
- 단백질 수송
100가지 이상의 폴리펩티드를 가지고 있으며 단백질 대 인지질 비율(무게기준으로 3:1이상, 분자수기준으로 1:15)이 높다. 또한 일반적으로 세균의 세포막에서도 볼 수 있는 카디오리핀이라는 특수한 인지질이 풍부하다. 외막과 달리 내막은 포린(porin)을 가지고 있지 않아 투과성이 상당히 낮다. 이 때문에 내막과 기질사이에 물질 농도차이가 생긴다. 수소 이온의 경우 농도차이는 에너지측면에서 봤을 때 전기화학포텐셜을 의미하며 수소이온이 ATPase를 통과할 때 잠재(포텐셜)에너지가 화학에너지로 전환(ATP생성)된다.
내막은 구불구불 접혀져 있기 때문에 막 표면적이 넓어져 ATP생성 능력을 높여준다. 이러한 내막이 늘어난 부분을 크리스타라고 한다. 예를 들어 간의 미토콘드리아는 크리스타를 포함한 내막 표면적이 외막의 5배에 달하며 근육세포와 같이 더 많은 ATP를 요구하는 세포의 경우 간세포의 경우보다 더 많은 크리스타를 가지고 있다.
[편집] 미토콘드리아 기질
기질은 내막으로 둘러싸인 공간으로 미토콘드리아 리보솜, tRNA, DNA게놈의 복사본과 수백 가지의 효소가 존재하고 있다. 효소들의 주기능은 지방산과 피루브산의 산화, TCA회로를 포함한다. [Alberts, 1994]
미토콘드리아는 자체적인 유전물질을 가지고 있으며 자체적으로 RNA와 단백질을 만들 수 있다. 핵에서 유래하지 않은 미토콘드리아DNA는 내막을 구성하는 펩티드(사람에서는 13개의 펩티드)정보를 저장하고 있다. 자체 생성된 펩티드는 숙주세포의 핵에서 유래한 폴리펩티드와 함께 미토콘드리아 막을 구성한다.
[편집] 미토콘드리아의 기능
미토콘드리아의 기본적인 기능은 유기물질을 세포가 사용하는 에너지 형태인 ATP로 전환하는 것이지만 다음과 같이 다른 많은 물질대사기능을 수행하고 있다.:
미토콘드리아의 일부 기능은 특정한 세포에서만 수행된다. 예를 들어 간세포의 미토콘드리아는 단백질 대사의 부산물인 암모니아를 해독하는 효소를 가지고 있다. 이러한 기능을 조절하는 유전자의 변이는 여러 가지 미토콘드리아 질병을 야기한다.
[편집] 에너지 전환
앞에서 언급했듯이 미토콘드리아의 주기능은 ATP의 생산으로 해당과정(미토콘드리아의 바깥쪽 세포질에서 이루어진다.)의 주생산물인 피루브산과 NADH 대사를 통하여 이루어진다. ATP의 생성은 세포의 유형이나 산소의 존재유무에 따라 2 가지방법이 있다.
[편집] 피루브산: TCA회로(tricarboxylic acid cycle)
- 이 부분의 본문은 TCA회로입니다.
해당과정에서 생성된 피루브산 분자는 능동수송에 의해 미토콘드리아 내막을 거쳐 기질로 들어간다. 기질에 들어간 피루브산은 coenzyme A에 결합해 acetyl CoA를 생성하고 생성된 acetyl CoA는 TCA회로(구연산회로 또는 Krebs 회로)로 들어가게 된다. 1개의 피루브산에 의해 3개의 NADH와 1개의 FADH2가 생성되어 전자전달계에 관여하게 된다. 미토콘드리아 내막에 붙어있는 숙신산 탈수소효소(succinate dehydrogenase)를 제외하고 TCA회로에 관여하는 모든 효소는 미토콘드리아 기질에 녹아있다.
[편집] NADH 와 FADH2: 전자전달계
- 이 부분의 본문은 전자전달계입니다.
NADH 와 FADH2에서 나온 에너지는 전자전달계의 여러단계를 거쳐 산소에 전달된다. 내막에 있는 전자전달계는 여러 가지 효소(예, NADH 탈수소효소, 코엔자임Q - 시토크롬 c 환원효소, 시토크롬 c 산화효소 등)의 복합체로 구성되어 있으며 전자전달계에서 방출된 에너지는 기질에서 막간공간으로 수소이온(H+, 양성자)을 능동수송기작으로 퍼내는데 사용된다. 대체로 효율적으로 전자전달이 이루어지지만 전자의 일부는 전자전달계를 다 거치지 않고 산소에 결합하여 과산화물(활성산소)을 만든다. 과산화물은 노화, 암 등의 원인으로 작용하는 것으로 알려져 있다.
전자전달계에서 능동수송으로 수소이온을 막간공간으로 퍼내기 때문에 막간공간(intermembrane space, 미토콘드리아 내막과 외막사이의 공간)의 수소이온농도가 높아져서 막간공간과 기질사이에 농도구배가 발생하게 된다. 농도구배로 인하여 막간공간에서 기질로 수소이온이 이동하려고 하는데 이 때 수소이온이 이동하는 통로가 ATP 생성효소 복합체(ATP synthase complex)이다. 수소이온이 ATP생성효소를 통과할 때 ADP와 무기인산(Pi)에서 ATP가 만들어진다. 미토콘드리아에서의 이러한 현상을 화학삼투(chemiosmosis)라고 부르며 촉진확산의 한 예로 들 수 있다. Peter D. Mitchell은 화학삼투작용을 밝힌 업적으로 1978년 노벨상을 받았으며 Paul D. Boyer와 John E. Walker는 ATP 생성효소의 작동기작을 설명하여 노벨화학상을 받았다.
수소이온이 ATP 생성효소를 거치지 않고 thermogenin이라 불리는 채널에서의 촉진확산(facilitated diffusion)에 의하여 기질로 다시 들어가기도 한다. 이것을 양성자 누출(proton leak, mitochondrial uncoupling)이라고 한다. 양성자 전기화학구배(농도 차)로 인한 잠재에너지가 열의 형태로 방출되는데 갈색지방조직(미토콘드리아가 많이 분포하여 지방조직이 갈색으로 보임)과 같은 특수한 조직에서 열을 발생시키기 위하여 일어난다. 몸이 떨어서 열을 발생시키는(근육의 긴축작용에 의한 열 발생, shivering thermogenesis) 것과는 다른 과정으로 non-shivering thermogenesis라고도 한다. 신생아나 동면 포유류에서 활발하게 일어나는 열 발생과정이다.
[편집] 복제와 유전
미토콘드리아는 세포의 에너지 요구에 반응하여 DNA를 복제하고 분열한다. 세포의 에너지요구량이 높아지면 미토콘드리아는 신장하여 분열하며 에너지 요구량이 낮아지면 미토콘드리아는 파괴되거나 불활성화 상태가 된다. 세포가 분열할 경우 세포질의 분배가 다소 불균등하기 때문에 미토콘드리아의 분배 또한 균등하지 않다. 미토콘드리아는 세균과 같이 이분법으로 자신을 복제하지만 세균과는 달리 미토콘드리아끼리 융합하기도 한다. 때로는 단백질과 폴리리보솜이 많은 곳에서 새로운 미토콘드리아가 생기기도 한다.
미토콘드리아의 유전자는 핵의 유전자와 같은 방법으로 유전되지 않는데, 정자에 의한 난자의 수정에서 난자의 핵과 정자의 핵이 동등하게 수정란의 세포핵유전자에 기여하는 반면 미토콘드리아는 난자의 것만 유전된다. 난자에 수정되는 정자는 단 1개뿐이며 정자의 미토콘드리아는 편모를 움직이는 에너지를 내는데 사용되다 난자에 들어오게 되면 이내 파괴되게 된다. 반면 난자 자체는 정자에 비해 상대적으로 적은 미토콘드리아를 가지고 있지만 살아남아서 분열을 계속하여 성체의 세포에 존재하게 된다. 즉 미토콘드리아는 거의 대부분 모계(母系)유전하는 것이다.
미토콘드리아 DNA의 모계유전(maternal inheritance)은 동물을 포함 대부분의 진핵생물에서 볼 수 있다. 드물게 부계유전을 하는 경우도 있는데 침엽수(소나무와 주목 제외)에서 흔하게 나타나며[2], 인간의 경우 아주 낮은 확률로 나타난다고 한다 [3].
단일계통 유전은 서로 다른 미토콘드리아 계통간의 유전자 재조합 가능성이 낮고 미토콘드리아DNA가 대체로 클론임을 의미한다. 만약 유전자 재조합이 없다면 모든 미토콘드리아DNA는 일배체형(haplotype)처럼 집단에 있어 모두 동일하기 때문에 집단의 진화적 역사를 연구하는데 유용하게 사용될 수 있다. 하지만 인간의 미토콘드리아 DNA재조합 이 일어나기도 한다.
미토콘드리아는 미토콘드리아가 유래되었을 것으로 추정되는 진정세균 무리보다 무척 적은 규모의 게놈을 가지고 있다. 일부는 소실된 것으로 보이지만 상당수가 세포핵으로 이전한 것으로 보인다. 이러한 현상은 진화적으로 볼 때 비교적 일반적으로 보인다.
미토콘드리아의 단일계통 유전은 일부 효모종의 미토콘드리아의 Petite 돌연변이(자신의 DNA 일부 또는 모두를 잃어 산화적 인산화를 못하는 비정상적인 미토콘드리아 돌연변이. petite와 정상적인 효모사이의 융합이 일어나게 되면 딸세포의 일정 비율은 petite가 됨.)에서 볼 수 있듯이 유전자간 분쟁(intragenomic conflict)을 야기할 것으로 보인다. 이러한 세포소기관의 분쟁은 남성과 여성의 분화로 해결할 수 있으며 유전자간 분쟁은 성의 분화가 일어난 원인 중 하나로 생각된다.
[편집] 집단 유전학에서의 이용
Main article: 미토콘드리아 유전학 미토콘드리아 DNA는 유전자 재조합이 거의 없기 때문에 집단 유전학이나 진화 생물학을 연구하는 과학자들에게 유용한 자료를 제공해준다. 반수체의 형태, 즉 거의 대부분 모계로부터 유전되기 때문에 다른 개체간의 미토콘드리아 DNA의 관계는 계통수(系統樹, phylogenetic tree)로 나타내어질 수 있으며 미토콘드리아 DNA의 유형분석을 통해 집단의 진화역사를 추론해 볼 수 있다. 인간 진화 유전학에서 대표적인 예가 아프리카기원설(인류 최초의 여성조상 미토콘드리아 이브의 추적)과 네안데르탈인 연구이다. 앞서 언급했듯이 미토콘드리아는 거의 모계로만 유전되어 재조합이 잘 일어나지 않기 때문에 최초의 여성인류를 추적할 수 있다. 모든 인류에게서 미토콘드리아 DNA유헝이 거의 일치하기 때문에 인류의 아프리카 기원설을 뒷받침하는 근거가 되고 있다. 네안데르탈인의 경우 해부학적으로 현생인류와 공통점이 없어 현생인류의 조상인지 여부에 대하여 논란이 있었지만 미토콘드리아 DNA연구 결과 현생인류와 연관성이 없음이 밝혀져 네안데르탈인 후예의 존재여부에 대한 논란에 종지부를 찍게끔 하였다. 그러나 미토콘드리아 DNA는 집단에서의 여자(모계)쪽의 역사만을 반영하기 때문에 전체 군집의 역사를 보여주지 못한다는 단점을 안고 있다. 예를 들어 인구의 분산이 주로 남자에 의해 이루어졌다면 미토콘드리아 연구로는 알아내지 못한다. Y염색체(포유동물에서 재조합이 없는 영역)를 포함한 핵DNA연구(재조합으로 분석하기가 힘듦)로 보다 넓은 범주의 집단의 진화적 역사를 연구한다.
[편집] 기원
미토콘드리아는 리보솜과 DNA를 가지고 있기 때문에 스스로 분열할 수 있기 때문에 독립적인 생활을 하던 원핵생물의 세포내 공생으로 유래했다고 본다. 하지만 구체적인 기원에 대해서 의견이 분분하다. 미토콘드리아 DNA는 대체로 원형이고 여러 유전정보를 담고 있어 원시세균 무리 중 특수하게 분화된 것이 원시 미토콘드리아로 되었다는 가설도 있고[Futuyma 2005], 리케챠(rickettsia)와 연관되어 있을 것이라는 가설이 있지만 세포내 공생에서 유래했다 점에서는 동일하다. 세포내 공생에 관해서도 기생에 의한 것이라는 이견도 있지만 숙주의 내포작용에 의한 것이라는 의견이 지배적이다. 원시 미토콘드리아의 숙주세포 내 공생으로 숙주는 세포호흡을 할 수 있게 되어 같은 영양을 공급받더라도 효율적으로 사용할 수 있게 되었고 원시 미토콘드리아는 생존을 보장받고 양질의 양분(당)을 공급받게 되어 상호간의 상승작용이 일어나 생존할 수 있는 영역의 확장이 일어났을 것으로 추측된다. 미토콘드리아뿐만 아니라 엽록체 또한 세포내 공생으로 상승작용이 일어난 것으로 보고 있다.
적어도 20억 년 전 세포공생이 이루어졌다고 추측되는 미토콘드리아는 아직도 그 기원에 대한 증거를 가지고 있다. 첫째, 미토콘드리아는 진핵세포(80S 리보솜)와 달리 원핵생물과 유사한 70S(침강계수, sediment coefficient)리보솜을 가지고 있다. 둘째, DNA가 원핵생물과 유사하다. 반복구간이 없이 코딩DNA비율이 높고 대체로 인트론(intron)이 없으며 원래 원핵생물보다 적은 유전정보를 담고 있지만 직선이 아닌 원형DNA를 가지고 있다는 점이 유사하다. 미토콘드리아는 인트론이 거의 없고 반복구간이 없음에도 불구하고 원형 mRNA를 잘라 다시 접합(polyadenylation)하여 완성된 mRNA를 만드는 다인자 전사(multigenic transcript)를 한다.
일부 진균(microsporidian)이나 원생생물(metamonad, entamoebid, 독립영양 pelobiont)과 같은 진핵생물에서는 미토콘드리아가 없는 경우도 있다. rRNA계통수에서 이들은 매우 원시적인 진핵생물로 여겨지며 미토콘드리아의 세포공생 이전에 출현한 것으로 보는 시각도 있으나 미토콘드리아에 의해 유도된 세포소기관[1]과 유전정보를 가지고 있으므로 실재로 미토콘드리아가 없는 진핵생물은 없다고 봐야한다. 결론적으로 미토콘드리아의 존재는 진핵생물의 발달에 있어 중요한 시발점이라 할 수 있겠다.
[편집] 참고문헌
- ↑ 1.0 1.1 Henze, K., W. Martin (2003). "Evolutionary biology: Essence of mitochondria". Nature 426: 127-128.
- ↑ Mogensen, H. Lloyd (1996). "The Hows and Whys of Cytoplasmic Inheritance in Seed Plants". American Journal of Botany 83: 383-404.
- ↑ Johns, D. R. (2003). "Paternal transmission of mitochondrial DNA is (fortunately) rare". Annals of Neurology 54: 422-4.
- Futuyma, Douglas J. (2005). "On Darwin's Shoulders". Natural History 114 (9): 64–68.
- Scheffler, I.E. (2001). "A century of mitochondrial research: achievements and perspectives". Mitochondrion 1 (1): 3–31.
- 틀:Cite book
[편집] 바깥 고리
- 쥐 간에서 추출한 미토콘드리아의 냉동절편 전자현미경 영상-gif파일(영어)
- 미토콘드리아 전자 절편구조(영어)
- 미토콘드리아 노화에 관한 캘리포니아 주립대학의 동영상(영어)
- 미토콘드리아에 대한 전반적인 논평(영어)
- 미토콘드리아: 구조가 기능을 말한다.(영어)
- 세포생물학에서 미토콘드리아(독일어)
- 미토콘드리아 도감(영어)
- 여러 가지 관련 문서들(영어)
- 미토콘드리아와 마음의 발달(한글)
- 미토콘드리아와 한민족의 기원(한글)
- 미토콘드리아와 엽록체에서의 에너지 생산(한글)
- 아담과 이브는 아프리카 출신(한글)
[편집] 같이 보기
- 화학삼투설
- 엽록체
- 전기화학 포텐셜
- 세포공생설
- 해당과정
- 미토콘드리아 질병
- 미토콘드리아 DNA
- 미토콘드리아 유전학
- 미토콘드리아 투과성 변이공(Mitochondrial permeability transition pore, Mt PT pore)
세포 내부의 세포소기관 |
---|
첨체 | 엽록체 | 섬모/편모 | 중심소체 | 소포체 | 골지체 | 리소좀 | 멜라닌소체 | 미토콘드리아 | 근원섬유 | 세포핵 | Parenthesome | 과산화소체 | 색소체 | 리보솜 | 액포 | 소포 |