Многомерное нормальное распределение
Материал из Википедии — свободной энциклопедии
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей - это обобщение одномерного нормального распределения.
[править] Определения
Случайный вектор имеет многомерное нормальное распределение, если выполняется одно из следующих эквивалентных условий:
- Произвольная линейная комбинация компонентов вектора имеет нормальное распределение.
- Существует вектор независимых стандартных нормальных случайных величин , вещественный вектор и матрица размерности , такие что:
- .
- Существует вектор и неотрицательно определённая симметричная матрица размерности , такие что плотность вероятности вектора имеет вид:
- ,
где - определитель матрицы Σ, а Σ − 1 - матрица обратная к Σ.
- Существует вектор и неотрицательно определённая симметричная матрица размерности , такие что характеристическая функция вектора имеет вид:
- .
[править] Замечания
- Если одно из приведённых выше определений принято в качестве основного, то другие выводятся в качестве теорем.
- Вектор является вектором средних значений , а Σ - его ковариационная матрица.
- В случае n = 1, многомерное нормальное распределение сводится к обычному нормальному распределению.
- Если случайный вектор имеет многомерное нормальное распределение, то пишут .
[править] Свойства многомерного нормального распределения
- Если вектор имеет многомерное нормальное распределение, то его компоненты имеют одномерное нормальное распределение. Обратное, вообще говоря, неверно!
- Если случайные величины имеют одномерное нормальное распределение и совместно независимы, то случайный вектор имеет многомерное нормальное распределение. Матрица ковариаций Σ такого вектора диагональна.
- Если имеет многомерное нормальное распределение, и его компоненты попарно некоррелированы, то они независимы. Однако, если только компоненты имеют одномерное нормальное распределение и попарно не коррелируют, то отсюда не следует, что они независимы.
- Контрпример. Пусть X˜N(0,1), а с равными вероятностями. Тогда Y = αX˜N(0,1), и корреляция X и Y равна нулю. Однако, эти случайные величины зависимы.
- Многомерное нормальное распределение устойчиво относительно линейных преобразований. Если , а - произвольная матрица размерности , то
- .
|
править |