Численное интегрирование
Материал из Википедии — свободной энциклопедии
Численное интегрирование — вычисление значения определённого интеграла (как правило, приближенное), основанное на том, что величина интеграла численно равна площади криволинейной трапеции, ограниченной осью абсцисс, графиком интегрируемой функции и отрезками прямых и
, где
и
— пределы интегрирования (см. рисунок).
Необходимость применения численного интегрирования чаще всего может быть вызвана отсутствием у первообразной функции представления в элементарных функциях и, следовательно, невозможностью аналитического вычисления значения определенного интеграла по формуле Ньютона-Лейбница. Также возможна ситуация, когда вид первообразной настолько сложен, что быстрее вычислить значение интеграла численным методом.
Содержание |
[править] Одномерный случай
Основная идея большинства методов численного интегрирования состоит в замене подынтегральной функции на более простую, интеграл от которой легко вычисляется аналитически. При этом для оценки значения интеграла получаются формулы вида
где — число точек, в которых вычисляется значение подынтегральной функции. Точки
называются узлами метода, числа
— весами узлов. При замене подынтегральной функции на полином нулевой, первой и второй степени получаются соответсвенно методы прямоугольников, трапеций и парабол (Симпсона). Часто формулы для оценки значения интеграла называют квадратурными формулами.
[править] Метод прямоугольников
Метод прямоугольников получается при замене подынтегральной функции на константу. В качестве константы можно взять значение функции в любой точке отрезка . Наиболее часто используются значения функции в середине отрезка и на его концах. Соответствующие модификации носят названия методов средних прямоугольников, левых прямоугольников и правых прямоугольников. Формула для приближенного вычисления значения определенного интеграла методом прямоугольников имеет вид
,
где ,
или
, соответсвенно.
[править] Метод трапеций
Если через концы отрезка интегрирования провести прямую, получим метод трапеций. Из геометрических соображений легко получить
.
[править] Метод парабол (метод Симпсона)
Использовав три точки отрезка интегрирования можно заменить подынтегральную функцию параболой. Обычно в качестве таких точек используют концы отрезка и его среднюю точку. В этом случае формула имеет очень простой вид
.
[править] Увеличение точности
Приближение функции одним полиномом на всем отрезке интегрирования, как правило, приводит к большой ошибке в оценке значения интеграла.
Для уменьшения погрешности отрезок интегрирования разбивают на части и применяют численный метод для оценки интеграла на каждой из них.
При стремлении количества разбиений к бесконечности, оценка интеграла стремится к его истинному значению для любого численного метода.
Приведенные выше методы допускают простую процедуру уменьшения шага в два раза, при этом на каждом шаге требуется вычислять значения функции только во вновь добавленных узлах. Для оценки погрешности вычислений используется правило Рунге.
[править] Метод Гаусса
Описанные выше методы используют фиксированные точки отрезка (концы и середину) и имеют низкий порядок точности (0 --- методы правых и левых прямоугольников, 1 --- методы средних прямоугольников и трапеций, 3 --- метод парабол (Симсона)). Если мы можем выбирать точки, в которых мы вычисляем значения функции , то можно при том же количестве вычислений подынтегральной функции получить методы более высокого порядка точности. Так для двух (как в методе трапеций) вычислений значений подынтегральной функции, можно получить метод уже не 1-го, а 3-го порядка точности:
.
В общем случае, используя точек, можно получить метод с порядком точности
. Значения узлов метода Гаусса по
точкам являются корнями полинома Лежандра степени
.
Значения узлов метода Гаусса и их весов приводятся в справочниках специальных функций. Наиболее известен метод Гаусса по пяти точкам.
[править] Метод Гаусса-Кронрода
Недостаток метода Гаусса состоит в том, что он не имеет легкого (с вычислительной точки зрения) пути оценки погрешности полученного значения интеграла. Использование правила Рунге требует вычисления подынтегральной функции примерно в таком же числе точек, не давая при этом практически никакого выигрыша точности, в отличие от простых методов, где точность увеливается в разы при каждом новом разбиении. Кронродом был предложен следующий метод оценки значения интеграла
,
где — узлы метода Гаусса по
точкам, а
параметров
,
,
подобраны таким образом, чтобы порядок точности метода был равен
.
Тогда для оценки погрешности можно использовать эмпирическую формулу
,
где — значение интеграла, оценненое методом Гаусса по
точкам. Библиотеки [gsl] и [SLATEC] для вычисления определенных интегралов содержат подпрограммы, использующие метод Гаусса-Кронрода по 15, 21, 31, 41, 51 и 61 точкам.
[править] Интегрирование при бесконечных пределах
[править] Методы Монте-Карло
[править] Многомерный случай
В небольших размерностях можно так же применять квадратурные формулы, основанные на многочленах Лагранжа. Однако в больших размерностях эти методы становятся неприемлемыми из-за быстрого возрастания числа точек сетки и/или сложной границы области. В этом случае применяется метод Монте-Карло. Генерируются случайные точки в нашей области и усредняются значения функции в них. Так же можно использовать смешанный подход — разбить область на несколько частей, в каждой из которых (или только в тех, где интеграл посчитать не удаётся из-за сложной границы) применить метод Монте-Карло.
[править] Литература
ISBN 5030033920 Д.Каханер, К.Моулер, С.Нэш. Численные методы и программное обеспечение (пер. с англ.). М.: Мир, 2001, 575 c.