New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Taylor series - Wikipedia, the free encyclopedia

Taylor series

From Wikipedia, the free encyclopedia

As the degree of the Taylor series rises, it approaches the correct function. This image shows sinx and Taylor approximations, polynomials of degree 1, 3, 5, 7, 9, 11 and 13.
As the degree of the Taylor series rises, it approaches the correct function. This image shows sinx and Taylor approximations, polynomials of degree 1, 3, 5, 7, 9, 11 and 13.

In mathematics, the Taylor series is a representation or approximation of a function as a sum of terms calculated from the values of its derivatives at a single point.

Specifically, the Taylor series of an infinitely differentiable real (or complex) function f, defined on an open interval (ar, a + r), is the power series

\sum_{n=0}^{\infin} \frac{f^{(n)}(a)}{n!} (x-a)^{n}.

Here, n! is the factorial of n and f (n)(a) denotes the nth derivative of f at the point a; the zeroth derivative of f is defined to be the function itself.

The series is named in honor of English mathematician Brook Taylor. If a = 0, the series is also called a Maclaurin series, named after Scottish mathematician Colin Maclaurin.

Functions that are equal to their Taylor series around any point a in their domain are called analytic functions. The trigonometric functions sine and cosine are examples of such functions. A Taylor series can be used to produce all the values of an analytic function, if the value of the function, and of all of its derivatives, is known at a single point. Uses of the Taylor series include:

  1. The partial sums of the series can be used as a good approximation of the values of the function.
  2. Replacing the function with the series is a tool used in many mathematical proofs.

Pictured in the right are increasingly accurate approximations of sin(x) around the point a = 0. The yellow curve is a polynomial of degree seven:

\sin\left( x \right) \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}.

Contents

[edit] History

Archimedes was probably the first to discover the methods of Taylor series by using an infinite summation to achieve a finite trigonometric result. Liu Hui independently employed a similar method 400 years later, and about 800 years later,[verification needed] several examples of the use of Taylor series or closely-related methods were given by Madhava in the 14th century. Though no record of his work survives, writings of later Indian mathematicians suggest that he found a number of special cases of the Taylor series, including the Taylor series for the trigonometric functions of sine, cosine, tangent and arctangent, and the second-order Taylor series approximations of the sine and cosine functions, which he extended to the third-order Taylor series approximation of the sine function. He is also thought to have discovered the power series of the radius, diameter, circumference, angle θ, π and π/4, along with rational approximations of π, and infinite continued fractions. His students and followers in the Kerala School further expanded his works with various series expansions and rational approximations until the 16th century.

In the 17th century, James Gregory also worked in this area and published several Maclaurin series. It was not until 1715 however that a general method for constructing these series for all functions for which they exist was finally provided by Brook Taylor, after whom the series are now named.

The Maclaurin series was named after Colin Maclaurin, a professor in Edinburgh, who published the special case of the Taylor result in the 18th century.

[edit] Properties

The function e−1/x² is not analytic at x = 0: the Taylor series is identically 0, although the function is not.
The function e−1/x² is not analytic at x = 0: the Taylor series is identically 0, although the function is not.

If this series converges for every x in the interval (ar, a + r) and the sum is equal to f(x), then the function f(x) is said to be analytic in the interval (ar, a + r). If this is true for any r then the function is said to be an entire function. To check whether the series converges towards f(x), one normally uses estimates for the remainder term of Taylor's theorem. A function is analytic if and only if it can be represented as a power series; the coefficients in that power series are then necessarily the ones given in the above Taylor series formula.

The importance of such a power series representation is at least fourfold. First, differentiation and integration of power series can be performed term by term and is hence particularly easy. Second, an analytic function can be uniquely extended to a holomorphic function defined on an open disk in the complex plane, which makes the whole machinery of complex analysis available. Third, the (truncated) series can be used to compute function values approximately (often by recasting the polynomial into the Chebyshev form and evaluating it with the Clenshaw algorithm).

Fourth, algebraic operations can often be done much more readily on the power series representation; for instance the simplest proof of Euler's formula uses the Taylor series expansions for sine, cosine, and exponential functions. This result is of fundamental importance in such fields as harmonic analysis.

Note that there are examples of infinitely differentiable functions f(x) whose Taylor series converge, but are not equal to f(x). For instance, for the function defined piecewise by saying that f(x) = e−1/x² if x ≠ 0 and f(0) = 0, all the derivatives are zero at x = 0, so the Taylor series of f(x) is zero everywhere, and its radius of convergence is infinite, even though the function most definitely is not zero everywhere. This particular pathology does not afflict complex-valued functions of a complex variable. Notice that e−1/z² does not approach 0 as z approaches 0 along the imaginary axis.

Some functions cannot be written as Taylor series because they have a singularity; in these cases, one can often still achieve a series expansion if one allows also negative powers of the variable x; see Laurent series. For example, f(x) = e−1/x² can be written as a Laurent series.

The Parker-Sochacki method is a recent advance in finding Taylor series which are solutions to differential equations. This algorithm is an extension of the Picard iteration.

[edit] List of Taylor series of some common functions

The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) for a full cycle centered on the origin.
The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) for a full cycle centered on the origin.
The cosine function.
The cosine function.
An 8th degree approximation of the cosine function in the complex plane.
An 8th degree approximation of the cosine function in the complex plane.
The two above curves put together.
The two above curves put together.

Several important Taylor/Maclaurin series expansions follow. All these expansions are also valid for complex arguments x.

Exponential function and natural logarithm:

\mathrm{e}^{x} = \sum^{\infin}_{n=0} \frac{x^n}{n!}\quad\mbox{ for all } x
\ln(1+x) = \sum^{\infin}_{n=0} \frac{(-1)^n}{n+1} x^{n+1}\quad\mbox{ for } \left| x \right| < 1

Geometric series:

\frac{x^m}{1-x} = \sum^{\infin}_{n=m} x^n\quad\mbox{ for } \left| x \right| < 1

Binomial theorem:

(1+x)^\alpha = \sum_{n=0}^{\infin} {\alpha \choose n} x^n\quad\mbox{ for all } \left| x \right| < 1\quad\mbox{ and all complex } \alpha

Trigonometric functions:

\sin x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1}\quad\mbox{ for all } x
\cos x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n}\quad\mbox{ for all } x
\tan x = \sum^{\infin}_{n=1} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1}\quad =  x + \frac{x^3}{3} + \frac{2 x^5}{15} + \cdots \mbox{ for } \left| x \right| < \frac{\pi}{2}
where the Bs are Bernoulli numbers.
\sec x = \sum^{\infin}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n}\quad\mbox{ for } \left| x \right| < \frac{\pi}{2}
\arcsin x = \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\mbox{ for } \left| x \right| < 1
\arctan x = \sum^{\infin}_{n=0} \frac{(-1)^n}{2n+1} x^{2n+1}\quad\mbox{ for } \left| x \right| \leq 1

Hyperbolic functions:

\sinh \left(x\right) = \sum^{\infin}_{n=0} \frac{1}{(2n+1)!} x^{2n+1}\quad\mbox{ for all } x
\cosh \left(x\right) = \sum^{\infin}_{n=0} \frac{1}{(2n)!} x^{2n}\quad\mbox{ for all } x
\tanh\left(x\right) = \sum^{\infin}_{n=1} \frac{B_{2n} 4^n (4^n-1)}{(2n)!} x^{2n-1}\quad\mbox{ for } \left|x\right| < \frac{\pi}{2}
\mathrm{arcsinh} \left(x\right) = \sum^{\infin}_{n=0} \frac{(-1)^n (2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\mbox{ for } \left| x \right| < 1
\mathrm{arctanh} \left(x\right) = \sum^{\infin}_{n=0} \frac{1}{2n+1} x^{2n+1}\quad\mbox{ for } \left| x \right| < 1

Lambert's W function:

W_0(x) = \sum^{\infin}_{n=1} \frac{(-n)^{n-1}}{n!} x^n\quad\mbox{ for } \left| x \right| < \frac{1}{\mathrm{e}}

The numbers Bk appearing in the summation expansions of tan(x) and tanh(x) are the Bernoulli numbers. The binomial expansion uses binomial coefficients. The Ek in the expansion of sec(x) are Euler numbers.

[edit] Calculation of Taylor series

Several methods exist for the calculation of Taylor series of a large number of functions. One can attempt to use the Taylor series as-is and generalize the form of the coefficients, or one can use manipulations such as substitution, multiplication or division, addition or subtraction of standard Taylor series to construct the Taylor series of a function, by virtue of Taylor series being power series. In some cases, one can also derive the Taylor series by repeatedly applying integration by parts. Particularly convenient is the use of computer algebra systems to calculate Taylor series.

[edit] First Example

Consider the function

f(x)=\ln{(1+\cos{x})} \,,

for which we want a Taylor series at 0.

We have for the natural logarithm

\ln(1+x) = \sum^{\infin}_{n=1} \frac{(-1)^{n+1}}{n} x^n = x - {x^2\over 2}+{x^3 \over 3} - {x^4 \over 4} + \cdots \quad\mbox{ for } \left| x \right| < 1

and for the cosine function

\cos x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} = 1 -{x^2\over 2!}+{x^4\over 4!}- \cdots \quad\mbox{ for all } x\in\mathbb{C}.

We can simply substitute the second series into the first. Doing so gives

\left(1 -{x^2\over 2!}+{x^4\over 4!}-\cdots\right)-{1\over 2}\left(1 -{x^2\over 2!}+{x^4\over 4!}-\cdots\right)^2 +{1\over 3}\left(1 -{x^2\over 2!}+{x^4\over 4!}-\cdots\right)^3-\cdots

Expanding by using multinomial coefficients gives the required Taylor series. Note that cosine and therefore f are even functions, meaning that f(x) = f( − x), hence the coefficients of the odd powers x, x3, x5, x7 and so on have to be zero and don't need to be calculated. The first few terms of the series are

\ln(1+\cos x)=\ln 2-{x^2\over 4}-{x^4\over 96}-{x^6\over 1440} -{17x^8\over 322560}-{31x^{10}\over 7257600}-\cdots

The general coefficient can be represented using Faà di Bruno's formula. However, this representation doesn't seem to be particularly illuminating and is therefore omitted here.

[edit] Second Example

Suppose we want the Taylor series at 0 of the function

g(x)=\frac{e^x}{\cos x}\,.

We have for the exponential function

e^x = \sum^\infty_{n=0} {x^n\over n!} =1 + x + {x^2 \over 2!} + {x^3 \over 3!} + {x^4 \over 4!} +\cdots

and, as in the first example,

\cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - \cdots

Assume the power series is

{e^x \over \cos x} = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots

Then multiplication with the denominator and substitution of the series of the cosine yields

\begin{align} e^x &= (c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots)\cos x\\ &=\left(c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4x^4 + \cdots\right)\left(1 - {x^2 \over 2!} + {x^4 \over 4!} - \cdots\right)\\ &=c_0 - {c_0 \over 2}x^2 + {c_0 \over 4!}x^4 + c_1x - {c_1 \over 2}x^3 + {c_1 \over 4!}x^5 + c_2x^2 - {c_2 \over 2}x^4 + {c_2 \over 4!}x^6 + c_3x^3 - {c_3 \over 2}x^5 + {c_3 \over 4!}x^7 +\cdots \end{align}

Collecting the terms up to fourth order yields

=c_0 + c_1x + \left(c_2 - {c_0 \over 2}\right)x^2 + \left(c_3 - {c_1 \over 2}\right)x^3+\left(c_4+{c_0 \over 4!}-{c_2\over 2}\right)x^4 + \cdots

Comparing coefficients with the above series of the exponential function yields the desired Taylor series

\frac{e^x}{\cos x}=1 + x + x^2 + {2x^3 \over 3} + {x^4 \over 2} + \cdots

[edit] Taylor series as definitions

Classically, the above functions are defined by some property that holds for them. For example, the exponential function is defined as the function that is equal to its own derivative. However, in computable analysis, functions must be defined by algorithms rather than properties, so the above Taylor expansions are used as primary definitions rather than derived results. This is also likely to be the case in software implementations of the functions.

Using Taylor series, one may define analytical functions of matrices and operators, such as matrix exponential or matrix logarithm.

[edit] Taylor series for several variables

The Taylor series may also be generalised to functions of more than one variable with

T(x_1,\cdots,x_d) = \sum_{n_1=0}^{\infin} \cdots \sum_{n_d=0}^{\infin} \frac{\partial^{n_1}}{\partial x_1^{n_1}} \cdots \frac{\partial^{n_d}}{\partial x_d^{n_d}} \frac{f(a_1,\cdots,a_d)}{n_1!\cdots n_d!} (x_1-a_1)^{n_1}\cdots (x_d-a_d)^{n_d}

For example, for a function that depends on two variables, x and y, the Taylor series to second order about the point (a, b) is:

f(x,y) \,
\approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) \,
+ \frac{1}{2}\left( f_{xx}(a,b)(x-a)^2 + 2f_{xy}(a,b)(x-a)(y-b) + f_{yy}(a,b)(y-b)^2 \right).

A second-order Taylor series expansion of a scalar-valued function of more than one variable can be compactly written as

T(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a})^T (\mathbf{x} - \mathbf{a}) + \frac{1}{2} (\mathbf{x} - \mathbf{a})^T \nabla^2 f(\mathbf{a}) (\mathbf{x} - \mathbf{a}) + \cdots

where \nabla f(\mathbf{a}) is the gradient and \nabla^2 f(\mathbf{a}) is the Hessian matrix (not to be confused with the Laplacian, which sometimes has the same notation). Applying the multi-index notation the Taylor series for several variables becomes

T(\mathbf{x}) = \sum_{|\alpha| \ge 0}^{}{\frac{\mathrm{D}^{\alpha}f(\mathbf{a})}{\alpha !}(\mathbf{x}-\mathbf{a})^{\alpha}}

in full analogy to the single variable case.


[edit] See also

[edit] References

  • Thomas, George B. Jr.; Finney, Ross L. (1996). Calculus and Analytic Geometry (9th ed.). Addison Wesley. ISBN 0-201-53174-7. 
  • Greenberg, Michael (1998). Advanced Engineering Mathematics (2nd ed.). Prentice Hall. ISBN 0-13-321431-1. 

[edit] External links

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu